
Security versus Energy Tradeoffs in
Host-Based Mobile Malware Detection

Jeffrey Bickford H. Andrés Lagar-Cavilla Alexander Varshavsky
Department of Computer Science AT&T Labs – Research AT&T Labs – Research

Rutgers University Florham Park, NJ Florham Park, NJ
jbickfrd@cs.rutgers.edu andres@research.att.com varshavsky@research.att.com

Vinod Ganapathy Liviu Iftode
Department of Computer Science Department of Computer Science

Rutgers University Rutgers University
vinodg@cs.rutgers.edu iftode@cs.rutgers.edu

ABSTRACT
The rapid growth of mobile malware necessitates the presence of
robust malware detectors on mobile devices. However, running
malware detectors on mobile devices may drain their battery, caus-
ing users to disable these protection mechanisms to save power.
This paper studies the security versus energy tradeoffs for a partic-
ularly challenging class of malware detectors, namely rootkit de-
tectors. We investigate the security versus energy tradeoffs along
two axes: attack surface and malware scanning frequency, for both
code and data based rootkit detectors. Our findings, based on a real
implementation on a mobile handheld device, reveal that protect-
ing against code-driven attacks is relatively cheap, while protecting
against all data-driven attacks is prohibitively expensive. Based on
our findings, we determine a sweet spot in the security versus en-
ergy tradeoff, called the balanced profile, which protects a mobile
device against a vast majority of known attacks, while consuming
a limited amount of extra battery power.
Categories and Subject Descriptors. C.5.3 [Computer System
Implementation]: Microcomputers—Portable devices (e.g., lap-
tops, personal digital assitants); D.4.6 [Operating Systems]: Se-
curity and Protection—Invasive software (e.g., viruses, worms, Tro-
jan horses)
General Terms. Experimentation, Measurement, Security
Keywords. Mobile malware, rootkits, security, energy

1. INTRODUCTION
We have come to rely on mobile devices as an integral part of

our everyday lives. We entrust our smartphones, netbooks and lap-
tops with personal information, such as email, friend lists, current
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location, and passwords to online banking websites. The future
holds an even greater role for mobile devices, e.g., as interfaces for
wireless payments [8] or smart home control [6]. Mobile devices
are thus swiftly becoming prized bounties for malicious entities:
while the quantity and diversity of mobile malware available today
pales in comparison with malware available for desktops, the in-
centives available to attackers point to a large and thriving future
underground economy based on infected mobile devices. This has
motivated recent research on both attacks against and defenses for
mobile devices [14, 15, 19, 21, 28, 34, 38, 41].

The main goal of this paper is to study how the energy-constrained
nature of mobile devices impacts their ability to run malware detec-
tion tools. Conventional wisdom holds that executing malware de-
tectors on resource-constrained mobile devices will drain their bat-
tery [36], causing users to disable malware detection to extend bat-
tery life, and in turn exposing them to greater risk of infection. We
present a framework to quantify the degree of security being traded
off when prolonging battery life, and the ways in which such trade-
offs can be implemented. Specifically, we study security tradeoffs
along two axes: (1) the surface of attacks that the malware detector
will cover, and (2) the frequency with which the malware detector
will be invoked.

Some emerging proposals for malware detection have sought to
sidestep the energy constraints that we formalize and quantify in
this study using offloaded architectures [9, 18, 37, 41], in which the
malware detector itself executes on a well-provisioned server and
monitors mobile devices. Unfortunately, malware detection offload
either incurs significant power expenditures [41] due to data up-
load, or has limited effectiveness because it is best suited to tradi-
tional signature-based scanning. Such signature scanning is eas-
ily defeated with encryption, polymorphism and other stealth tech-
niques. For this reason, there is growing consensus that signature-
based scanning must be supplemented with powerful host-based
agents that, for example, employ behavior-based detection algo-
rithms [17]. Host-based detectors execute on and share resources
such as CPU time and battery with the host device, thereby making
the security versus energy tradeoff germane to the design of such
detectors.

In this paper, we focus on security versus energy tradeoffs for
host-based rootkit detection. Rootkits are a class of malware that
infect the code and data of the operating system (OS) kernel. By
infecting the kernel itself, they gain control over the layer that is
traditionally considered the trusted computing base (TCB) on most
systems. Rootkits can therefore be used to evade user-space mal-
ware detectors (including most commercial solutions that employ



signature-based scanning). Further, rootkits enable other attacks
by hiding malicious processes, and allow attackers to stealthily re-
tain long-term control over infected devices. Recent work has ar-
gued that the increasing complexity of mobile device OSes offers
a vast attack surface of code and data that makes rootkits a realis-
tic threat [14]. Indeed, rootkits have recently been developed for
iPhones [34] and Android phones [38]. As a consequence of the
variety of ways in which a kernel can be exploited, and rootkit de-
tection implemented, we show that rootkit detectors can be mod-
ulated to explore a rich space of configuration options. Varying
these configurations allows us to explore, in a general manner, the
tradeoff between the security provided by the detection agent and
the energy consumption of the host.

We conduct our study by adapting two complementary rootkit
detectors proposed in prior work, namely Patagonix [30] and Gibral-
tar [10,11], to work on a mobile phone-like platform. We measured
their security guarantees and energy footprint under several config-
urations that varied the surface of attacks the detectors covered,
and the frequency with which they performed checks. Patagonix
offers protection against malicious code in the kernel, by checking
the integrity of static code pages (kernel inclusive). Gibraltar of-
fers protection against malicious data in the kernel, by scanning the
kernel’s data segment and ensuring that its data structures satisfy
certain integrity properties, which are normally violated in rootkit-
infected kernels. For both rootkit detectors, trading security for
energy savings, e.g., by reducing the attack surface monitored or
by reducing the frequency of checks, introduces a window of time
during which rootkits can infect the mobile device. We recognize
this might open a new class of attacks in which malware exploits
the periodic nature of the system. We aim to mitigate this through
the use of randomization. In this paper, we focus only on detecting
the infection and not on recovering the infected device.

We outline here the results of our study and the contributions of
our paper:
• The energy impact of checking the integrity of kernel code pages
is minimal, as low as 3% after a bootstrap phase. Therefore, a
rootkit detector that offers kernel code integrity can do so while
draining minimal energy, and can potentially be an “always-on”
tool.
• Checking the integrity of all kernel data structures can place a
significant strain on the mobile device’s battery life. However, the
energy consumption of the detector can be significantly reduced
by a factor of three to five, if integrity checks are performed on
selected high-risk data structures, or if data structure checks are
only performed periodically.
• Based upon these measurements, we identify a sweet spot in the
security versus energy tradeoff, one that provides the best compro-
mise between energy consumption and the window of vulnerability
opened as a result. This balanced profile is able to detect a vast
majority of known attacks which work against code and selected
kernel data structures, while consuming a limited amount of extra
battery in our testbed, with an energy overhead between 6 to 9%.

To summarize, our main contribution is to quantitatively explore,
for the first time, the tradeoffs between security monitoring and en-
ergy consumption on mobile devices.

2. ROOTKITS: ATTACKS AND DEFENSES
The stealthy nature of rootkits allows them to retain long-term

control over infected devices, and to serve as a stepping stone for
other attacks such as key-loggers or backdoors. It is no surprise
then that a 2006 study by MacAfee Avert Labs [4] reported a 600%
increase in the number of rootkits in the three year period from

2004-2006. The explosive growth of rootkits continues; MacAfee’s
2010 threat predictions report also contains several examples of
rootkit-aided Trojan horses that were used to commit bank fraud [5].
The increasing complexity of the hardware and software stack of
mobile devices, coupled with the increasing economic value of per-
sonal data stored on mobile devices, point to an impending adop-
tion of rootkits in the mobile malware arena [14]. The recent devel-
opment of proof-of-concept rootkits for Android-based phones [38]
and the iPhone [34] only reinforces these predictions.

2.1 Attack vectors
Rootkits remain stealthy by compromising the integrity of en-

tities that belong to the trusted computing base (TCB) of victim
devices. On most devices, these include OS code and data, as well
as key user-space processes and files. We briefly survey the evolu-
tion of rootkit attack vectors, from those that are easiest to detect to
those that are most challenging to detect.
• System utilities. Early rootkits attempted to hide the presence
of malicious processes by compromising system utilities that are
used for diagnostics. For example, a rootkit that replaces the ls
and ps binaries with trojaned versions can hide the presence of
malicious files and processes. Such rootkits are easy to detect by
an uncompromised TCB that certifies the integrity of user-space
utilities with checksums.
• Kernel code. The next generation of rootkits attempted to evade
detection by affecting the integrity of kernel code. Such corrup-
tion is most usually achieved by coercing the system into loading
malicious kernel modules. Once a rootkit has gained kernel exe-
cution privileges, it can mislead all detection attempts from user-
or kernel-space. Successful detection of such rootkits is achieved
instead by components located outside the control of the infected
kernel. The two main approaches involve use of external hardware
which scans the kernel memory using DMA (e.g., [10, 11, 27, 47]),
or introspection from the vantage point of a different virtual ma-
chine (e.g., [22, 30, 39]).
• Kernel data structures. A large majority of rootkits in use today
corrupt kernel control data by modifying function pointers in data
structures such as the system call table or the interrupt descriptor
table. This attack technique allows rootkits to redirect control to
attacker code when the kernel is invoked. For example, the Adore
rootkit [31] hides user-space processes from reporting tools like
ps, by hijacking the function pointer for readdir() in the root
inode of the /proc file system. More recently, research has shown
that attacks against non-control kernel data are realistic threats [12,
16]. For example, a rootkit can subvert key cryptographic routines
by affecting kernel parameters controlling pseudo-random number
generation.

2.2 Defenses
In this section, we discuss the design of two prior techniques

to rootkit detection. The two techniques are representative of the
algorithms used in most rootkit detectors, and complement each
other. The first technique, based on Patagonix [30], detects rootk-
its by monitoring code integrity; the second technique, based on
Gibraltar [10, 11], monitors kernel data integrity.

Both tools use hypervisors to achieve isolation from the kernels
they monitor. The hypervisor guarantees isolation between a mon-
itored system (the untrusted guest domain) and the monitoring tool
(the trusted domain); functional correctness of such guarantees has
been formally proven [29]. The hypervisor and the trusted domain
therefore comprise the TCB of the system. When the trusted do-
main detects a compromise, the TCB is capable of taking over the
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1(a) Checking code integrity with Patagonix. ¬ When a code
page in the guest is first scheduled for execution, it results in a trap
to the hypervisor and suspends the guest.  The hypervisor for-
wards this page to the Patagonix daemon. ® Patagonix hashes the
page and authorizes it. ¯ If the execution of the code page is autho-
rized, Patagonix informs the hypervisor, which resumes execution
of the guest; otherwise, Patagonix raises an alert.

1(b) Checking data integrity with Gibraltar. ¬ When the guest
kernel modifies a data page, the dirty bit of the corresponding entry
in the shadow page table is set.  The Gibraltar daemon consults
the shadow page table and fetches dirty pages. ® It reconstructs
the data structures in these pages and checks whether they satisfy
integrity constraints. ¯ Gibraltar allows the untrusted guest to exe-
cute only if integrity constraints are satisfied.

Figure 1: The design of Patagonix (Section 2.2.1) and Gibraltar (Section 2.2.2).

UI to alert the user and provide containment options – the specifics
of this mechanism are outside the scope of this paper.

2.2.1 Checking code integrity
Patagonix [30] is a rootkit detection tool whose design typifies

that of most code integrity monitoring systems. It provides mech-
anisms to ensure that all code executing on a system belongs to a
whitelist of pre-approved code. Rootkits that modify system utili-
ties or kernel code can be detected if the modified code is not in the
whitelist. Patagonix can also detect certain data-modifying rootk-
its, e.g., those that modify kernel data pages that should not be mod-
ified during normal operation. Figure 1(a) presents the design of
Patagonix.

Patagonix uses the capabilities of the hypervisor and the non-
executable (NX) page table bit to detect and identify all executing
code, including kernel code, system utilities, and other user pro-
cesses. It modifies the code in the hypervisor to first set the NX-bit
on all pages in the guest domain. When a page is first scheduled
for execution, the NX bit causes a processor fault. The hypervisor
receives the fault, pauses the guest domain and places information
about the fault in a shared page that can be accessed by the Patag-
onix daemon executing in the trusted domain. The daemon hashes
and compares the executing code to a whitelist of known software,
comprised of the hashes of all approved code pages.

Patagonix enforces the W⊗X principle: pages are either modi-
fiable, or executable. The hypervisor manipulates permission bits
to enforce mutual exclusion between the two states. Pages will
thus always be re-checked after modification. However, for code
pages that are kept resident in the system and never change, Patag-
onix will not need to perform any further work. Thus, beyond an
initial bootstrapping phase, the kernel working set and long-lived
processes represent no additional work for Patagonix.

Patagonix uses optimizations to ensure fast verification of code
pages. It remembers pages of code that have been blessed and have
not changed. Thus, short-lived but recurring processes (e.g.,grep)
will result in hypervisor work as new page tables are created, but
no daemon work, due to reuse of resident unmodified code pages.

Patagonix knows the entry point of each binary in its whitelist –
the first trap on a new binary should match an entry point in the
whitelist. For approved binaries, it stores the associated address
space (defined by the base address of the current page table) and
the segment of the address space the binary occupies: pages within
the same segment should only match pages of the same binary.

Though Patagonix is not representative of all code-integrity mon-
itoring systems, its design is similar to several state-of-the art rootkit
detection tools that have recently been proposed in the research lit-
erature. For example, NICKLE [42] and SecVisor [43] are similar
in overall design to Patagonix. Grace et al.’s paper on commodity
operating system protection [24] implements a subset of techniques
used by Patagonix [45]. Our results on security versus energy trade-
offs for Patagonix will therefore also be applicable to these tools.

2.2.2 Checking data integrity
Rootkits that modify arbitrary kernel data structures are chal-

lenging to detect because of two reasons. First, the kernel manages
several thousand heterogeneous data structures, thereby providing
a vast attack surface. Second, unlike code, kernel data is routinely
modified during the course of normal execution. Distinguishing
benign modifications from malicious ones requires intricate spec-
ifications of data structure integrity. In this section, we describe
Gibraltar [10, 11], a tool that monitors the integrity of kernel data
structures to detect malicious changes.

Figure 1(b) shows the design of Gibraltar: a daemon executes
on the trusted domain, and periodically fetches data pages from the
untrusted guest kernel. The daemon reconstructs kernel data struc-
tures in a manner akin to a garbage collector. It starts at a set of
kernel root symbols whose memory locations are fixed. Using the
OS type definitions, it identifies pointers in these root symbols, and
recursively fetches more pages that contain data structures refer-
enced by these pointers.

Once data structures have been reconstructed, data structure in-
variants that specify kernel integrity constraints are verified. Some
invariants are simple to verify: the values of function pointers must
be addresses of known functions; the entries of the system call



table should remain constant during the execution of the kernel.
Other more complex invariants span sophisticated data structures,
e.g., each process that is scheduled for execution must have an entry
in the linked list of active processes on the system.

Data structure invariants can be specified by domain experts [40],
but this approach can be labor-intensive. Instead, Gibraltar lever-
ages the observation that a large number of data structure invariants
can be automatically inferred by observing the execution of an un-
infected kernel. Such inference is performed during a controlled
training phase, when a clean OS executes several benign work-
loads. Prior work [10, 11] shows that high-quality invariants can
be obtained with a relatively short training phase using the Daikon
invariant inference tool [20].

Rootkits that affect kernel data integrity (and the corresponding
detection tools) are a relatively recent development in contrast to
rootkits that affect code integrity. The overall design of Gibral-
tar substantially resembles those of other data integrity monitor-
ing tools, such as SBCFI [39] and Petroni et al.’s specification-
based rootkit detection architecture [40]. HookSafe [46] prevents
data-oriented rootkits (whereas Gibraltar can only detect them), but
only protects a proper subset of Gibraltar’s detection space. Other
systems that detect rootkits by checking data invariants, such as
OSck [25] and Co-Pilot [27], check for simpler invariants and thus
may miss rootkits that Gibraltar can detect.

Shadow page table optimization.
The original design of Gibraltar ran the daemon on a physically iso-
lated machine and fetched memory pages from the monitored ma-
chine via DMA (using an intelligent NIC [10,11]). For the study in
this paper, we adapted Gibraltar to execute on a hypervisor, which
allowed us to implement novel performance optimizations. No-
tably, we implemented a shadow page table optimization that al-
lows the Gibraltar daemon to focus the application of integrity con-
straints on just those data pages that were modified by the guest.
This optimization relies on the use of shadow page tables by mod-
ern hypervisors, which grant to the TCB fine-grained control over
the permission bits of virtual-to-physical memory translation. In
particular, they can be used to cause faults on the first attempt to
modify a page. The hypervisor catches these faults and records
them in a “log-dirty” bitmap. The Gibraltar daemon consults this
bitmap and only focuses on pages whose dirty bits are set, and are
known to contain data-structures of interest subject to integrity con-
straints.

The shadow page table optimization has a substantial effect on
the number of checks Gibraltar has to perform. In experiments
using the lmbench [33] workload executing for 144 seconds, 25
rounds of checks are performed by the optimized version of Gibral-
tar, as opposed to 5. By avoiding unnecessary checks to unmodi-
fied data, Gibraltar asserts the integrity of the kernel data structures
5 times more frequently, for the same power-budget and the same
length of a user workload. We observed similar benefits in the other
workloads employed in this paper.

3. THE SECURITY/ENERGY TRADEOFF
Security mechanisms have traditionally focused on well-provisioned

computers such as heavy-duty servers or user desktops. Mobile de-
vices present a fundamental departure from these classes of ma-
chines because they are critically resource-constrained. While ad-
vances throughout the last decade in mobile processor, GPU and
wireless capabilities have been staggering, the hard fact is that mo-
bile devices utilize batteries with a limited amount of stored power.

In this context, some fundamental tenets of security mechanism
design need to be reconsidered. Without the limit of resource con-

straints, security mechanisms will check everything they can, all
the time. In a mobile device, aggressively performing checks on
large sets of security targets will inexorably lead to resource ex-
haustion and the inability to carry on useful tasks. Arguably, a
certain amount of engineering could be added to any given se-
curity mechanism to make it marginally more efficient in terms
of resource usage. We have just shown one such example with
our shadow page table-based optimizations for Gibraltar. But we
counter-argue that nothing short of a fundamental transformation
will make security monitors palatable for mobile environments be-
cause energy must be a core consideration when designing tools for
such environments.

The primary contribution of our work is in acknowledging that
security needs to be traded off for battery lifetime in a mobile de-
vice, and in providing a framework to classify the choices a de-
signer will face when modulating her security mechanism for a
battery-constrained environment. Furthermore, we provide means
for measuring the amount of security being traded off. To the best
of our knowledge, neither such a framework nor such metrics were
deemed necessary before the widespread adoption of smartphones
and other mobile devices.

3.1 What to check and when to check it
Energy-oblivious security mechanisms will check everything they

can as frequently as they can. In a mobile setting, one must decide
upon the attack surface to monitor (i.e., what to check) and the fre-
quency with which to perform monitoring (i.e., when to check).
These two factors must be incorporated as design parameters of
the security mechanism itself to allow the mobile device to flexibly
navigate the security versus energy tradeoff. We apply these con-
cepts to the two rootkit detection systems discussed in the previous
section.
• What to check? Operating system kernels provide a vast attack
surface and a rootkit detection mechanism that monitors the entire
attack surface will soon exhaust the mobile phone’s battery. Both
Patagonix and Gibraltar can be configured to check various subsets
of the attack surface.
The Patagonix system can be configured to check (a) only the ex-
ecution of kernel code pages; (b) kernel code pages and the exe-
cution of key binaries, such as root processes; and (c) kernel code,
root processes, and selected kernel data structures, such as the sys-
tem call table. Option (c) provides the highest security, whereas
option (a) is the most efficient. The Patagonix daemon can triv-
ially differentiate between kernel and user-space code due to the
virtual addresses used: in all commodity OSes the kernel resides,
on all address spaces, in a high band of virtual addresses. Root pro-
cesses are manually classified and tagged in the whitelist; this does
not prevent Patagonix from checking libraries linked in the address
space of a root process (e.g., OpenSSL for sshd).
Gibraltar also offers a wide variety of configurations, ranging from
checks on selected kernel data structures, such as those that store
control data (including function pointers), to checks on all kernel
data structures. In between these two extremes, we can tune Gibral-
tar to check additional classes of data structures: static data; the
process list and runnable queue, which are a common target of at-
tacks that hide the existence of a malicious user-space process [31];
all linked lists beyond the previous two; and more.
• When to check? Independently of the size of the attack surface
being checked, one must tune how often to perform the checks. The
design space for the frequency of checks ranges from an approach
that uses periodic polling (where the period is configurable) to one
that uses event-based or interrupt-based notifications to trigger the
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Figure 2: The security versus energy tradeoff. These figures illustrate various points in the design space of Patagonix (Figure 2(a))
and Gibraltar (Figure 2(b)). The y-axis of each figure shows various subsets of the attack surface, while the x-axis considers the
parameters used to decide the frequency of checks. The shaded portions of each figure show the portions of the design space that we
explored in our experiments (Section 5).

rootkit detector. Choosing the appropriate approach is a fairly well-
understood dichotomy prevalent in systems design. With proper
hardware support, one can implement event-based checks relatively
efficiently, preventing the use of busy loops that burn too much
CPU, or sleep timers that ignore momentous events.
The original design of Patagonix uses an event-based approach to
pause the guest domain each time a new page is scheduled for exe-
cution and check the page. However, Patagonix can also be modi-
fied to batch and perform these checks en masse. The former option
detects and prevents malicious code execution in an online fashion,
but may frequently pause the guest domain. In contrast, the latter
option may detect malicious code only after it has executed on the
system, but is likely to be more efficient.
The Gibraltar daemon traverses the guest OS’s data pages in rounds,
pausing for an interval of time after each round. During this in-
terval, Gibraltar does not scan the kernel’s data structures. The
frequency of this traversal impacts energy efficiency and security.
Frequent traversal minimizes the vulnerability of the guest operat-
ing system, while infrequent traversal conserves energy. The origi-
nal version of Gibraltar has a T of zero as it continuously scanned
all kernel pages: once the daemon completed traversal of all rele-
vant kernel data structures, it immediately started a new round of
traversals.
Our implementation of Gibraltar for mobile devices also incorpo-
rates an event-based mechanism in which the hypervisor interrupts
the Gibraltar daemon when the guest has modified a certain num-
ber of pages, N, so that the data structure checks for these pages
can be batched and performed en masse. We added a new inter-
face to allow the Gibraltar daemon to instruct the hypervisor about
which pages are relevant and which are not. The daemon prepares
a bitmap indicating pages in which data structures of importance
reside. The hypervisor will only wake up the daemon once N rele-
vant pages in the bitmap have changed. This prevents the hypervi-
sor from accounting for frequent stack or page cache modifications
as relevant.

Figure 2 summarizes these concepts, and also shows the portions
of the design space that we considered in our experiments to quan-
tify the security versus energy tradeoffs for mobile device rootkit
detection.

3.2 Measuring the security we give away
Reducing the attack surface monitored or the frequency of checks

introduces the possibility of evasion. A rootkit could evade detec-
tion by infecting the kernel between checks or by modifying un-
monitored data structures. Therefore, the security provided to a
system is intimately related to the frequency of checks and the at-
tack surface monitored.
• Impact of attack surface size. It is challenging to measure the
impact of varying the attack surface on the security of the system.
This is because (1) different entities in the attack surface impact
system security to varying degrees; and (2) not all entities in the
attack surface can be compromised with equal ease. With rootkits,
attacks that modify kernel code, static data, and data structures that
hold control data (e.g., the system call table) are more abundant
and easy to program than attacks that modify arbitrary kernel data
structures.
For lack of a good metric, we default here to manual expert cura-
tion. Prior studies have shown that: (1) kernel code is far more
important to rootkit detection than user-space code [30, 42, 43];
(2) among rootkit-based attacks that modify kernel data, function
pointers are the prime target [39] as opposed to other data struc-
tures. A 2007 study of 25 popular rootkits by Petroni et al. [39]
showed that 24 of these rootkits modified function pointers to achieve
their malicious goals. Rootkits that do not use function point-
ers as an attack vector typically either modify different data struc-
tures [12] or inject malicious code into the kernel [25].
• Impact of check frequency. Constant vigilance is likely more ef-
fective than daily overnight checks at catching exploits before they
have done much harm. To quantify how the frequency of checks
impacts the security provided by a detection system, we introduce
the concept of window of vulnerability.
The window of vulnerability for a given object is defined as the
time elapsed between two consecutive checks on that object. For
example, if we check the kernel system call table every two sec-
onds, a rootkit has a maximum of two seconds to hijack the system
call table, steal user information written to a file via write(), and
optionally restore the table to its pristine state to avoid detection.
Our window of vulnerability is therefore two seconds. For security
systems that check multiple components, the window of vulner-



ability metrics of each component (each code page or each data
structure in our case) can be statistically aggregated into a system-
wide value (e.g., as the window of vulnerability averaged over all
components).
The window of vulnerability is the time period during which a sys-
tem is vulnerable to attack. The greater the period of time between
checks, the more time an attacker has to perform a sophisticated
attack. For example, with a large window of vulnerability, a rootkit
might have time to steal and transmit a user’s personal information,
e.g., gathered during a secure browsing session using a key logger,
to a malicious server. In general, a smaller window of vulnerability
will expose fewer user interactions to the rootkit. For instance, with
a smaller window of vulnerability, it may be possible to detect the
presence of a rootkit and raise an alert before the user completes
the secure browsing session, thereby protecting at least some of the
user’s personal information.
Periodic polling systems have a clearly defined set of windows of
vulnerabilities that they expose for each object they check. For
a polling period T , the average window of vulnerability will be
at least T , plus the processing time involved within each round.
However, event-based systems can provide a greater degree of as-
surance. If the hardware, can immediately alert the monitor of a
potential threat even before it is allowed to happen, then the system
can provide an effective window of vulnerability of zero. Doing so
effectively requires the system to react to a potentially large volume
of events. For this reason, it is common for an event-based system
to perform event merging or coalescing, e.g., interrupt batching for
a processor, or signal handling for UNIX processes. In this case the
window of vulnerability widens again depending on the amount of
merging performed.

3.3 Mitigating a new class of timing attacks
Resourceful and knowledgeable adversaries will immediately rec-

ognize a new opportunity. By learning the timing mode and param-
eters of the system, they can craft attacks that break in, exploit, and
clean up within the period of time during which security checks are
inactive. We mitigate this by randomizing the timing parameters.
For example, if Gibraltar is to be configured to check data structures
every T seconds, we instead trigger checks at intervals pulled from
a uniform distribution in the interval (T -M,T+M], with M ≤ T . To
generate a proper uniform distribution, the hypervisor can tap from
sources of entropy that are protected from the guest kernel, such as
the count of hardware interrupts. Because the checking intervals
are uniformly distributed in the interval (T -M,T+M], windows of
vulnerability and checking overhead will converge to the same val-
ues as if a fixed period of T seconds had been chosen.

For event-based timing modes, we can apply the same random-
ization to the number of events that will trigger security checks.
However, we have to further augment the approach with an explicit
timeout (which itself could be randomized, if necessary). The rea-
son for this is that the system may enter a steady state in which the
selected threshold of events (e.g. page executions or modifications)
is not reached, thus granting the attacker an unlimited window of
vulnerability.

In this paper we are focused on measuring and characterizing the
tradeoffs between security checking and energy footprint. For those
reasons, we use fixed intervals and event thresholds throughout the
evaluation section. This removes an additional layer of experimen-
tal noise from our measurement goals.

A similar concern arises if we reduce the surface of coverage for
our checks. Similarly, we might choose to catch the attacker off-
guard by randomly triggering coverage of a wider attack surface.

4. EXPERIMENTAL SETUP
We now describe the experimental platform and the workloads

employed for our study. Our goal is to illuminate various aspects
of the security/energy tradeoff for host-based rootkit detection:
• Impact of attack surface size. If a malware detector provides
greater security by monitoring a larger attack surface (i.e., classes
of attack), its detection algorithm will likely be more complex,
CPU-intensive, or will take longer to execute. How does the size of
the monitored attack surface impact battery life?
• Impact of malware scanning schedule. Malware detectors can be
configured to be “always-on” tools that continuously monitor for
malicious activity, or can periodically scan the mobile device. The
former option provides increased security while the latter option
improves battery life. How does the schedule of scanning impact
energy consumption?
In Section 5 we report our findings relating to the above questions.
In Section 6 we build upon our results to further address:
• Adaptation. Given the conventional wisdom that executing mal-
ware detectors reduces battery life, can we develop a strategy that
maximizes security while minimizing battery consumption?
• End user involvement. Can we further expose such strategy and
its inherent tradeoffs and options to end users? Can we do so in
an intelligible manner similar to that used with traditional perfor-
mance versus power-savings strategies?

4.1 Platform
We used a Viliv S5 mobile device [2] as our experimental plat-

form. It is equipped with an Intel Atom Z520 1.33 GHz proces-
sor rated at 1.5 W, 4.8" touch screen, 32GB hard drive, 1GB of
memory, WiFi, Bluetooth, a 3G modem, GPS, and a battery rated
at 24,000 mWh. Since our rootkit detection tools are dependent on
running in a virtualized environment, the ability to install a hypervi-
sor on the device was a key requirement. The limited availability of
mobile virtualization options dictated our platform choice. With its
x86 Atom processor, the Viliv supports Xen paravirtualization [13],
and is one of few such devices most resembling a smartphone that
we could purchase in North America. Other virtualization plat-
forms either require VT extensions [35], which are available only
on a few higher-powered Atom models; are not available commer-
cially and/or in open-source form (e.g., VMware Mobile [3]); or
cannot be installed on commodity smart phones available today
(e.g., the Xen port to the ARM platform [26] and the OKL4 Mi-
crovisor [1]). In spite of its slightly larger form-factor, the Viliv
is functionally equivalent to a phone. Further, the Menlow chipset
used by the Viliv is the precursor to the to-be-released Moorestown
platform for Intel-based smartphones such as the LG GW990.

On the device, we used the Xen 3.4.2 hypervisor. Xen relies on
a trusted domain (i.e., dom0) to manage VM lifecycles and execute
device drivers, which in our case was a Fedora 12 stack running
a version of Linux 2.6.27.42 with appropriate Xen patches. We
enhanced the hypervisor on the device with support for Patagonix
and Gibraltar, and added the respective daemons to the dom0 stack.
Our guest domain ran Linux 2.6.27.5 with Xen paravirtualization
patches under a CentOS 5.5 distribution.

To measure power, we used a Tektronix TDS-3014 oscilloscope
with a Hall effect current probe. When performing power measure-
ments, we disconnected the battery from the Viliv S5 device and
supplied power directly from a 5V source. We used this approach
to ensure that the current we measure is directly powering the de-
vice. The current probe was attached to the charging cord and a



Operation Energy (mWh)
Send/Receive Phone Call 1.1 ± .03 / second

Send/Receive 160-char SMS 6.3 ± 1 / SMS
Send/Receive 5-char SMS 6.2 ± 1.2 / SMS

Table 1: Energy spent for common mobile phone operations.

laptop connected to the oscilloscope recorded the current readings
over the time of an experiment.

4.2 Workloads
Experimental workloads that have traditionally been used to eval-

uate the performance of security tools, such as members of the
SPEC family, often fail to capture the dynamics of the mobile expe-
rience. We therefore created our own workload for our evaluation.
This workload aims to replicate standard mobile usage by loading
a series of popular web pages and checking email.

Our workload is driven by a script that starts up the Firefox
browser by pointing it to the desired site via a command line ar-
gument. It then monitors the CPU usage of the browser until it
settles into reasonably low utilization; many popular sites employ
Flash animations that never quite stop consuming resources. Once
the site has quiesced, the script discards the Firefox instance, and
moves on to the next site on the list. By pointing the browser to a
Youtube clip, Flash playback will prevent quiescing of the browser
throughout the duration of the clip, thus allowing full playback.
The script similarly launches an email client and discards it after
email checkout has finished and the process has quiesced.

Our workload is highly customizable and independent of a spe-
cific platform, needing just the ability to launch browser and email
client instances from a script. We plan to augment our workload
with fetching and uploading data to a social networking site and
release it to the mobile computing community.

Throughout the experiments in this paper, we loaded google.
com, cnn.com, gmail.com using an open account, youtube.com
pointing to a 60-second video, and Thunderbird configured to check
email from one IMAP account with several hundred messages in its
inbox. We ran this workload on the Viliv using both 3G and WiFi
connectivity, and for simplicity refer to the results respectively as
“3G Browsing” and “WiFi Browsing.”

For completeness, we also used lmbench [33], a CPU intensive
workload designed to measure OS performance. We used the first
six stages of lmbench because it thoroughly exercises multiple OS
interfaces, thereby stressing our rootkit detectors.

4.3 Rootkit detector configuration
To generate a database of invariants, Gibraltar must first execute

a training phase. Since lmbench modifies many data structures in
the operating system, we trained Gibraltar against multiple com-
plete executions of lmbench. The result is a database of 131,201
invariants across 2209 data structure types with a size of 7MB.

Patagonix, requires a database of hashes for all binaries running
on a system. To generate this database, we generated an ELF pars-
ing tool to output a hash of each code page. We parsed all binaries
located in the official CentOS repository, resulting in a database
size of 36 MB. The database stores 10929 different binary files and
509709 hashes. We also store a database of 627 kernel code pages
resulting in a size of less than 1 MB.

5. EXPERIMENTAL RESULTS
In this section, we present experiments that illustrate the secu-

rity versus energy tradeoff faced by kernel code-integrity and data-
integrity monitors. In each experiment, we report the total energy

dissipated by the Viliv as it executed one of three workloads (lm-
bench, 3G and WiFi Browsing) and the value of the corresponding
security metric (attack surface or window of vulnerability). Un-
less otherwise noted, we report the average and standard deviations
obtained from three experiment runs for each data point.

We start this section by quantifying the overhead of executing
the hypervisor on the Viliv. We compare the execution of our work-
loads on a native bare-metal kernel, to the execution of our work-
loads inside a virtual machine, with no host-based rootkit detectors
activated. As measured by total energy dissipation, the overhead
is negligible in all cases. We observed the maximum overhead in
the 227-second 3G browsing workload, with the energy footprint
going from 333 to 335 mWh in virtualized mode (1.29%).

Table 1 presents the energy dissipated by two operations that are
common to mobile phones: placing/receiving a 60-second phone
call, and sending/receiving SMS messages. We observe that vary-
ing the SMS message size had relatively no effect on the total en-
ergy required to send the message. In the rest of this section, we
will refer back to Table 1 to place the energy overheads in context
by comparing them to the cost of common phone operations.

5.1 Impact of security on energy and runtime
The introduction of host-based rootkit detection has an imme-

diate impact on the time to completion for a given workload, and
a strongly correlated impact on the total energy consumed by the
workload. Table 2 shows the measurements for our three work-
loads; we compare the original implementations of Patagonix and
Gibraltar to runs without security checks. Pearson correlation co-
efficients between energy and time overheads exceed 0.97 for all
workloads.

Primarily, host-based rootkit detection competes for CPU cycles
with the workload, prolonging the time to completion. Patagonix’s
contention is a function of the amount of different code executed,
and for our workloads the resulting overhead does not exceed 33%.
Gibraltar is constantly asserting kernel data integrity, and thus con-
stantly contending for CPU cycles. The overhead becomes depen-
dent on the hardware in use. With a CPU-bound workload (lm-
bench) the overhead nears 100%. With network IO involved, there
is no workload slowdown during periods in which the system stalls
waiting for IO – Gibraltar occupies otherwise unused CPU cycles.
With faster IO hardware (WiFi), there are fewer stall periods, and
the relative overhead is higher (64% versus 43% for 3G). With
slower and less-energy efficient hardware (3G), the longer fractions
of IO stall occupied by Gibraltar yield a higher absolute overhead
(146 mWh versus 89 mWh for WiFi).

The strong correlations between energy footprint and workload
runtimes observed here also hold throughout the experiments in this
paper. We focus on energy measures and do not report runtimes due
to space considerations.

5.2 Modifying the attack surface
The energy dissipated by a security tool can be reduced by de-

creasing the fraction of the attack surface monitored. We quantify
this observation considering the attack surface of code and data.

Impact on code integrity.
We configured Patagonix to monitor three subsets of the attack sur-
face: (a) kernel code only; (b) kernel code and root processes; and
(c) all code on the system, including kernel code, root and non-root
processes. We set up Patagonix to check each code page as soon as
it was scheduled for execution. On average, the Patagonix daemon
verified 309 pages of kernel code as it executed the WiFi and 3G
Browsing workloads; this number rose to 749 code pages when we

google.com
google.com
cnn.com
gmail.com
youtube.com


No Security Patagonix Gibraltar r
Time (s) Energy (mWh) Time (s) Energy (mWh) Time (s) Energy (mWh)

lmbench 217.5 ± 0.2 261.39 ± 3.7 243.5 ± 2.1 303.31 ± 1.3 374.6 ± 13.4 473.56 ± 5.2 0.9995
3G Browsing 227.2 ± 9.9 333.84 ± 12.9 269.7 ± 5.8 375.36 ± 10.7 317.5 ± 14.1 479.95 ± 13.1 0.9779

WiFi Browsing 144.3 ± 5.3 141.08 ± 5.8 180.9 ± 8.9 187.84 ± 8.5 262.1 ± 7.5 230.38 ± 2.9 0.9707

Table 2: Runtime versus Energy correlation for security checks. Runtime and energy footprint for our workloads, ran with no
host-based rootkit detection, and with the original versions of our code (Patagonix) and data (Gibraltar) integrity checkers. Column
r shows that the Pearson correlation coefficient between energy and runtime is strong.
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3(a) Code-integrity checks. Each time a page of code is executed,
an integrity check is performed. Percentages indicate the energy
overhead with respect to the case with no security.

3(b) Data-integrity checks. Each data class includes the previous
class on the x-axis. Verifying the integrity of all kernel data is ex-
pensive when compared to code integrity checks.

Figure 3: Impact of varying the attack surface on the total energy dissipated by code and data integrity checks.

included user-space code as well, 90 pages of which corresponded
to root processes. During the execution of the lmbench workload,
Patagonix verified 301 kernel code pages and 1602 user-space code
pages, 11 of which belonged to root processes.

Figure 3(a) illustrates the energy dissipated by each of the three
workloads. We present results for each subset of the attack surface
considered. For each workload, the leftmost column is the baseline,
which shows the energy dissipated by the workload executing in an
environment with no security checks enabled (i.e., in a hypervisor
without Patagonix). Percentages reported above columns represent
the extra energy dissipated (over the baseline value) when moni-
toring the corresponding subset of the attack surface. Comparing
these results to Table 1, the extra energy dissipated by Patagonix
when eagerly checking all code for the 144-second WiFi workload
is the same as placing a 38 second phone call or sending 7 SMS
messages.

Once Patagonix verifies the integrity of a code page, if the run-
ning process remains resident in memory and the code is not modi-
fied, Patagonix will never need to verify this page again, and it will
therefore incur in no further overhead. This is particularly true for
the kernel, which after boot remains resident and unchanged (save
for module additions). The rightmost column in Figure 3(a) (“Af-
ter Initial Checks”) depicts the Patagonix overhead for the common
case of recurring processes after bootstrap: the energy measure-
ments were obtained by running the workloads a second time, after
the initial execution. In this case, extra hypervisor work is neces-
sary to enforce the W⊗X principle on the new page tables created.

However, no additional daemon work is needed because the resi-
dent code pages have already been checked. The hypervisor over-
head is small, and equivalent to a 10 second phone call or sending
2 SMS messages.

Impact on data integrity.
We configured Gibraltar to monitor five classes of kernel data, con-
taining: (a) static kernel data, i.e., data that is initialized during
kernel boot-up and persists throughout the execution of the kernel;
(b) data structures representing the process list; (c) all linked lists;
(d) all kernel data structures that store function pointers; and (e) all
data structures. Each class is inclusive, i.e., data structures verified
in each class also include the previous class as a subset. We set
up Gibraltar to continuously monitor data integrity, and we refer to
one complete traversal of the kernel’s data segment as a detection
round.

Figure 3(b) illustrates the total energy dissipated while Gibral-
tar monitors each of our three workloads. Our first observation is
that the energy dissipated by Gibraltar is significantly higher than
in the Patagonix case. As explained before, the Gibraltar daemon
continuously contends for CPU cycles with the user workload. Our
second observation is that the energy dissipated by Gibraltar varies
with the attack surface being monitored. This is despite the fact that
irrespective of the attack surface, Gibraltar executes continuously
without any periods of dormancy. We hypothesize that cache pollu-
tion effects determine the overhead differences: with larger attack
surfaces to cover, Gibraltar traverses a larger volume of data, thus
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4(a) Number of rounds. 4(b) Energy dissipated per round.

Figure 4: Impact of varying the attack surface for kernel data integrity checks on the energy dissipated per detection round and the
number of completed detection rounds. Each data class includes the previous class. As data classes are added to the attack surface
being monitored, the number of detection rounds completed decreases, and the energy per round increases. Verifying the integrity
of all kernel data is expensive, but restricting the amount of data structures verified can decrease the energy dissipated per round by
up to 95%.

effectively behaving as an adversarial workload in terms of mem-
ory locality. Decreased memory locality impacts processor cache
performance efficiency, and thus energy efficiency. We plan to fur-
ther investigate this effect, to potentially adjust Gibraltar’s behavior
to cache pollution rates.

Figure 4 presents the number of detection rounds Gibraltar com-
pleted throughout a workload, as well as the energy overhead per
detection round. Both metrics are essentially locked in a zero-
sum game: as the surface of attacks covered increases, more en-
ergy is spent in proportionally fewer rounds. When monitoring a
smaller attack surface, data structures are checked more frequently
(see Figure 4(a)), presenting a smaller window of vulnerability to
attackers. The energy per round spent during the verification of
kernel static data, linked lists and function pointers is significantly
lower than that spent checking all data (see Figure 4(b)). This
is fact is especially evident for the 3G and WiFi Browsing work-
loads, which dissipate approximately 3×-5× less energy than when
Gibraltar monitors all data structures. This result is significant be-
cause a recent study of 25 rootkits [39] shows that 24 operate by
violating the integrity of static data, linked lists or function point-
ers. As a consequence, Gibraltar can protect against most known
attacks with modest energy dissipation per round: in the next sec-
tion we show the limited amount of security we trade off by spacing
these rounds and preventing continuous checking (and energy dis-
sipation).

The number of data structures is one of two parameters that de-
termine Gibraltar’s coverage. The other is the number of invariants
that are checked on these data structures. Decreasing the number
of invariants from the original 131,201 to zero resulted in virtually
no energy savings per round. We conclude that the dominant factor
in the overhead per round for Gibraltar is the cost of reconstructing
data structures.

5.3 Modifying the frequency of checks
Rootkit detection can be event-based, as in the original design

of Patagonix, or polling-based. Patagonix can be adapted to batch

events, while Gibraltar can be configured to poll kernel memory in
different ways. In this section, we explore the effects of changing
the frequency of checks, while measuring the security that we give
away.

Impact on code integrity.
In the Patagonix experiments we observed that there were, on av-
erage, 50050 hypervisor notifications for lmbench, 13803 for 3G
Browsing, and 15825 for WiFi Browsing. Each notification trig-
gers a context switch to the trusted domain, where the page of code
attempting to execute is checked. To decrease the number of con-
text switches, Patagonix can be configured to add pages to a queue
maintained in the hypervisor, notifying the daemon in the trusted
domain only when the queue is full. Recall from Section 2.2.1 that
the hypervisor places information about a faulting executable page
(page number, address space, and instruction address) on a page
shared with the trusted domain. The maximum number of entries a
single 4 KB x86 memory page can hold is 341, thus dictating the
size of our queue.

Figure 5 shows that batching code integrity checks results in a
net decrease in energy dissipation for Patagonix. We attribute this
primarily to the decrease in context switches. We observed 440
context switches while executing lmbench, 75 while executing the
3G Browsing workload, and 70 while executing the WiFi Brows-
ing workload. This 99% decrease in the number of context switches
yields the most impact for the WiFi workload: the Patagonix over-
head decreases from the equivalent of placing a 38 second phone
call to the equivalent of placing a 22 second phone call. Figure 6
shows that these results hold as we vary the coverage surface of our
code integrity checks. Finally, as in the original case, subsequent
executions of the workloads require no additional code verifications
by the daemon, resulting in decreased energy expenditures up to a
minimum of 3% for 3G browsing.

Batching code execution notifications fundamentally alters the
security guarantees of Patagonix. By design, the original version
of Patagonix offers a zero window of vulnerability: no code ex-
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Figure 5: Impact of varying the frequency of code integrity
checks. Batching code integrity checks reduces energy over-
head up to a maximum of 3% for 3G browsing.
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Figure 6: Impact of batching code integrity checks for vari-
ous attack surfaces. Energy reductions are also observed when
batching code integrity checks for different attack surfaces.

Workload Window of Vulnerability (s)
lmbench 2.5066 ± 3.39

3G Browsing 0.8766 ± 1.63
WiFi Browsing 0.7233 ± 1.79

Table 3: Window of vulnerability for batched code integrity
checks. While batching saves energy, it also allows code to exe-
cute for a brief period of time without being checked.

ecutes without prior inspection. Batching allows code to execute
for a period of time without being modified, opening up a window
of vulnerability. Table 3 shows that the windows of vulnerability
are fairly small (under a second for browsing workloads), although
quite variable because the rate at which new code pages execute is
not at all uniform.

As discussed in Section 3.3, event-based queues need to be com-
plemented with a timeout. Otherwise, the queue may never com-
pletely fill up, allowing in our case for rootkit code to remain unde-
tected for arbitrarily long. We have not addressed this in this paper
as our focus was in studying mechanisms in isolation. From Table 3
we conclude that a timeout of five seconds would suffice.

Impact on data integrity.
Gibraltar can be configured to poll kernel data structures in one of
two ways. The first configuration option uses a polling period T (in
seconds) between detection rounds – the Gibraltar daemon starts a
fresh traversal of kernel data structures T seconds after finishing
the previous traversal. The second configuration option is event-
based: the Gibraltar daemon is woken up after the guest kernel has
modified N pages containing data structures of importance.

Figure 7 succinctly captures the security versus energy tradeoff.
The solid lines represent the energy dissipated by the workloads
executing in a guest domain monitored by Gibraltar, with different
polling periods T varying between 0, 5, 15, 30, 45, 60, and 120
seconds. The broken lines represent the average window of vulner-
ability in the system. Increasing T results in less frequent rounds
of verification – it increases battery life but decreases the overall
security of the system, opening up wider windows of vulnerability.
Recall that the average window of vulnerability is the mean of the
times elapsed between consecutive integrity checks for each kernel
data structure. The lower bound for the window of vulnerability
is thus T , plus a small quantity derived from the time spent within
each verification round.

Figure 8 presents the result of using the second configuration
option to vary the frequency of checks. We configured Gibraltar
to trigger integrity checks after N data pages have been modified,
with N varying between 10, 50, 75, 100 and 120 pages. Both the
lmbench and 3G Browsing workloads do not trigger a detection
round for N=100 and N=120 pages. This is because these work-
loads repeatedly modify the same set of 75 to 99 kernel data pages.
As the value of N increases, the amount of time between detection
rounds also increases, and we observe the same phenomenon as in
the polling case: energy overhead is traded off for an increase in
the window of vulnerability in the kernel.

6. SECURITY/ENERGY PROFILES
This section discusses how the results of the experiments from

the previous section can be used to construct profiles that end-users
can leverage to make educated decisions on how best to protect
their mobile platforms. In that regard, security versus energy trade-
offs must be similar to performance/energy tradeoffs, which have
existed since early laptop models and are therefore familiar to end-
users. Such performance/energy tradeoffs are typically expressed
succinctly, as a set of pre-defined power management profiles, in
keeping with the conventional wisdom that a vast majority of end-
users will steer away from both too much data and too many op-
tions.

Consider, for instance the power management profiles available
on an iPhone running iOS 4.0. The only options exposed are:
(1) screen brightness in standard mode; (2) the ability to auto-
matically dim the screen brightness if inactive (but not parameters
such as the dim gradient), and (3) the timeout period before the
phone locks and the screen is turned off. Standard Windows 7 in-
stallations expose two power-management profiles, a balanced and
power saver profile. Inquisitive users can find a third high perfor-
mance profile. Further control is allowed by tailoring user-specific
profiles. For security management to be useful, similar profiles
must be made available to users. Power management profiles rep-
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Figure 7: Impact on energy and security when varying the period between data integrity checks. Gibraltar is triggered every time
T seconds elapse between detection rounds, where T is represented on the x-axis. As the energy spent decreases, the window of
vulnerability increases at a quasi-linear rate dependent on the time between detection rounds.
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Figure 8: Impact on energy and security when varying the threshold of dirty pages for data integrity checks. Gibraltar is triggered
every time N pages change, with N represented on the x-axis. Because the rate of kernel page modification is not linear, windows of
vulnerability increase non-linearly as well.

resenting the extremities of the security versus energy tradeoff are,
of course, easy to synthesize. In the rest of this section, we explain
the reasoning behind a “best compromise” profile.

The results from the previous section show that energy cost as-
sociation with checking code integrity is much lower than the cost
of checking data integrity. The cost of Patagonix reduces further
after code pages have been verified once and the system settles into
a relatively stable working set of code pages. However, checking
the integrity of kernel code alone is not sufficient to detect rootkits.
Rootkits can perform their nefarious activities without installing
new code to do so, e.g., by using existing binary streams [44] or di-
rectly modifying kernel data structures by exploiting kernel buffer
overflows. Static checking of code, as performed by Patagonix,
cannot prevent potential hijacking of JiT code regions. Ultimately,
control-flow is often governed by data structures such as function
pointers, whose tampering could lead to subtle compromises.

Figure 4 shows that the power consumption of Gibraltar rises
sharply when one increases its coverage to include all kernel data.
However, checking the integrity of kernel data objects that are typi-
cally attacked by rootkits (function pointers, process list, plus static
objects) is three to five times cheaper energy-wise. The decision on
which set of data structures to check is based on typical rootkit be-
havior [39] and is independent of the workload used in our experi-

ments. Further, Figure 7 shows that a reasonable tradeoff between
energy efficiency and window of vulnerability can be achieved by
observing the intersection point between the corresponding curves.
At the intersection point, there is a balance between energy con-
sumption and the window of vulnerability of the system. Generally,
this intersection point will be dependent on the workloads used to
determine the tradeoff. From our browsing workloads, we deter-
mine the “sweet spot” as a polling mode with a period of T = 30
seconds. It is worth pointing out that for three fairly different work-
loads (from a system point-of-view), the intersection point lies in
the neighborhood of T = 30 seconds. For the case of checking code
integrity, Figure 5 shows that batching integrity checks reduces the
energy overhead when using Patagonix.

Using this evidence, we construct a balanced profile for mod-
erate energy consumption with a high degree of assurance against
most rootkit attacks. This profile combines batched checks of ker-
nel code pages, with polling-based integrity checks of static kernel
data, linked lists and data structures containing function pointers,
using the T = 30 second period identified as the sweet spot.

Figure 9 presents the energy dissipation of this balanced profile.
Windows of vulnerability for kernel code vary between 2.5 and 0.7
seconds, while windows of vulnerability for kernel data structures
monitored are on average 40.74 seconds. The energy overhead re-
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Figure 9: Energy dissipated for balanced security profile. Code
and data integrity checks are executed simultaneously in a bal-
anced setting. Patagonix batches daemon notifications while
Gibraltar checks function pointers, lists, and static symbols
every 30s. This figure shows that the energy overhead re-
mains manageable while verifying 96% of the rootkit attack
space [39].

mains manageable at a maximum increase of 14%. Web browsing
over 3G or WiFi incurs less overhead at 6% and 9%, respectively.
The latter overhead is equivalent to a 15 second phone call or 2
SMS messages, for a workload originally taking 144 seconds. We
note that the lower-energy mode into which Patagonix transitions
after checking the kernel working set and resident processes is not
included here.

7. RELATED AND FUTURE WORK
In this section, we discuss prior work on detecting malware on

resource-constrained mobile devices. Although these works have
developed new detection approaches tailored for mobile devices,
some of which are resource-aware, we are not aware of prior work
on quantifying the security versus energy tradeoff. However, we
leverage some observations from the literature to guide our future
work plans.

Offloading detection.
As discussed in the Introduction, one way to sidestep the security
versus energy tradeoff for detecting certain kinds of malware is to
offload detection to a well-provisioned machine. Maui [18] and
CloneCloud [9] approach general cloud offloading, while Paranoid
Android [41] focuses on security. The latter performs user-space
operation record and replay, at the granularity of system calls and
signals. Replay on well-provisioned servers allowed offloading of
security checks, as they are executed on a conceptually identical en-
vironment. However, host-based operation record, and the upload-
ing of these operations to a server, resulted in an energy overhead
of 30%.

Given the increasing popularity of cloud-offload, we conducted
a feasibility study to investigate whether rootkit detection can be
similarly offloaded. Instead of running the host-based rootkit de-
tection logic locally, we perform a straight-forward partition. The
same hypervisor logic executes in the device, selecting the same
kernel code and data pages for checking. However, these pages are
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Figure 10: Cloud-based feasibility test. An increasing trend
is to offload detection mechanisms to the cloud. The figure
presents the total energy dissipated while offloading pages to
an idealized cloud-based rootkit detector. For browsing work-
loads, cloud-based rootkit detection would require a signifi-
cantly higher amount of energy compared to host based detec-
tion mechanisms.

sent to a well-provisioned cloud server, which is idealized in two
aspects. First, it replies immediately to the client: processing an
arbitrary amount of rootkit detection logic consumes zero CPU cy-
cles on the server. Second, we placed the server in the same LAN
as the WiFi access point, resulting in small Internet RTT latencies.

Figure 10 compares the energy dissipation of the offloaded ar-
chitecture with that of the balanced profile, and the case in which
no security is enabled. We elided 3G from these experiments be-
cause: (a) previous work on cloud offload points to marginal en-
ergy gains at best using 3G [9, 18], and (b) 3G RTTs are substan-
tially higher than WiFi RTTs in a LAN. For the browsing workload,
cloud-offload presents a substantially higher energy overhead, due
to the high frequency and volume at which kernel pages are sent.
In spite of the idealized speed of the cloud server, network latency
results in no gains in terms of windows of vulnerability. The results
lead us to conclude that cloud-based rootkit detection is in principle
more expensive than host-based detection, barring a fundamentally
different approach.

Collaborative and behavior-based detection.
In keeping with the recent interest on behavior-based techniques
for malware detection, researchers have investigated techniques tai-
lored for mobile phones. The work of Bose et al. [15] and Kim
et al. [28] are two such examples, which use a host-based agent
that observes activities on the phone and reports anomalies such as
forwarding SMS messages to external phone numbers or the dele-
tion of important system files. The work of Kim et al. is an in-
teresting complement to the security versus energy tradeoff studied
in our work. They proposed a security tool that generates power
signatures for applications running on a handheld device to detect
energy-greedy anomalies caused by mobile malware such as Blue-
tooth worms.

The techniques developed in these works can possibly be used
to inform the design of an adaptive security versus energy profile
to complement the balanced profile discussed in Section 6. The
key shortcoming of predefined profiles (e.g., the balanced profile)



is that they rely on a set of assumptions about past rootkit behavior.
If such profiles were to become standard in a software distribu-
tion, a vast user population will be bound to well-known profiles.
Anecdotal observation indicates that most users never switch en-
ergy/performance profiles, pointing to a similar behavior for secu-
rity versus energy profiles. Malware writers will thus be given the
gift of a high-payoff and easy to study target.

An adaptive rootkit detection tool could leverage the techniques
mentioned here to detect anomalous behavior unique to the mobile
platform. We leave to future work a scenario where security tran-
sitions occur based on the perceived risk of user interactions. For
example, a user browsing the internet might be considered a high
risk scenario compared to a user placing a typical phone call. In this
case, the tool can use this web browsing activity to automatically
transition to a high security state to protect against malicious web-
sites. During a normal phone call, the state may be transitioned
to a low security mode. By automatically transitioning between
power-saving and high-security modes, such an adaptive approach
can protect against threats while also conserving battery power. It
also provides the added benefit of not binding the device to fixed
security versus energy profiles.

Smartphone app security.
Recent research advocates for preemptive approaches that aid dis-
tributors verify the security of smartphone apps before they are de-
ployed. Although not a panacea to the security problem, preemp-
tive certification as implemented by Kirin [19] and ScanDroid [21]
can detect and discard a large fraction of malware before it reaches
the phone. Such techniques can complement host-based detectors,
which can run using conservative security versus energy profiles
when “trusted” apps are downloaded and executed.

Trusted computing.
Recent proposals have suggested using Trusted Platform Module
(TPM) hardware to certify the integrity of code executing on mo-
bile devices [23]. TPMs can digitally sign the software stack ex-
ecuting on a mobile device, and transmit this signature as a proof
of the security of the mobile device. While TPMs can complement
host-based detectors by proving their presence on a mobile device,
they cannot supplant them, because it is challenging to provide con-
tinuous integrity guarantees with a TPM (even with techniques such
as Intel’s TXT mode) [32].

Hardware advances.
ARM processors have a superior performance to Atom processors
in terms of energy footprint. Once virtualization is available, port-
ing our experiments to an Atom platform will likely result in smaller
energy expenditures for host-based rootkit detectors. We have shown
that the overheads imposed by security are tightly dependent on
the hardware used and go beyond the processor. Security causes
CPU contention, and this in turn prolongs workload runtime and
keeps IO devices other than the processor, such as WiFi and 3G
transceivers, turned on for longer. Multi-core mobile architectures [7]
could altogether eliminate CPU contention and runtime overhead.
It is unclear, however, what level of efficiency multi-core architec-
tures will present, and what kinds of overhead will result from the
aggressive execution of security checks on multiple cores.

8. CONCLUSIONS
This paper explored, for the first time, the tradeoff between se-

curity monitoring and energy consumption on mobile devices. We
studied security versus energy tradeoffs for host-based detectors,

focusing on rootkits, a particularly challenging class of malware.
We proposed a framework to investigate security versus energy
tradeoffs along two axes, attack surface and malware scanning fre-
quency, and to measure the security being traded off. We applied
our framework to complementary hypervisor-based code- and data-
based rootkit detectors on a phone-like device. Our results show
that protecting against code-driven attacks is relatively cheap, while
protecting against all data-driven attacks is prohibitively expensive.
We identified a sweet spot in the security versus energy tradeoff,
one that minimizes both energy consumption and the window of
vulnerability opened as a result. This balanced profile is able to de-
tect a vast majority of known attacks, which work against code and
selected kernel data structures, while consuming a limited amount
of battery power. We conclude by motivating the need for new
mechanisms to enable cloud-offload of rootkit detection, and by
proposing the use of mobile-specific behavior-based anomaly de-
tectors to transition between power-saving and high-assurance se-
curity modes.
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