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ABSTRACT
Mobile application developers pay little attention to the interactions
between applications and the cellular network carrying their traffic.
This results in waste of device energy and network signaling re-
sources. We place part of the blame on mobile OSes: they do not
expose adequate interfaces through which applications can inter-
act with the network. We propose traffic backfilling, a technique
in which delay-tolerant traffic is opportunistically transmitted by
the OS using resources left over by the naturally occurring bursts
caused by interactive traffic. Backfilling presents a simple inter-
face with two classes of traffic, and grants the OS and network
large flexibility to maximize the use of network resources and re-
duce device energy consumption. Using device traces and network
data from a major US carrier, we demonstrate a large opportunity
for traffic backfilling.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Performance
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1. INTRODUCTION
Wide adoption of mobile devices along with ubiquitous cellular

data coverage has resulted in an explosive growth of mobile ap-
plications that expect always-accessible wireless networking. This
explosion has placed strains on resources that are scarce in the mo-
bile world: handheld battery life and cellular network capacity. On
the user side, poor battery life due to unoptimized mobile apps has
been blamed for user dissatisfaction and phone returns [7]. On the
network side, the growth rate of mobile data is outstripping the rate
at which new cellular wireless capacity is being added [6], leading
to proposals for optimization of data use through techniques such
as WiFi offloading [3].
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Little attention, however, has been paid by OS designers to the
efficiency of the interactions between cellular networks and mobile
applications. Because the acquisition of cellular network resources
incurs large signaling and latency costs (up to 2 seconds), resources
are reserved for several seconds once in use. The extra time at
the end of a reservation is usually called “tail”, and is a mecha-
nism used to minimize signaling costs when traffic is intermittent
yet somewhat closely spaced. Thus, depending on the precise tim-
ing of data streams, network usage characteristics such as energy
requirements, latency and bandwidth vary widely, even within a
single location. Ignoring these dynamics can result in significant
waste of scarce network resources and energy - e.g., it has recently
been shown that for a popular music streaming mobile application,
3.6% of the traffic consumes 64.1% of the network device energy
and produces the vast majority of the network signaling [12].

Proposals to address this issue fall in two camps: a) “tail-optimization”
approaches [12, 11] that modify the allocation of network resources
to more closely match predicted traffic patterns, or b) traffic schedul-
ing approaches that accumulate traffic into highly-efficient bursts [13,
4]. However, we contend that the opportunities for both tail predic-
tion and traffic shaping are fundamentally limited by one factor:
users are unpredictable. They will not prefetch content, or follow
perfectly regular patterns to benefit the overall health of the net-
work. Furthermore, delaying traffic from interactive applications
can significantly degrade user experience.

An additional problem is that socket-based network APIs pro-
vided by current OSes are inadequate for optimizing either network
resource allocation or traffic patterns. Sockets hide all the charac-
teristics of the underlying network and provide the abstraction of a
pipe over which “instantaneous communication” is available. This
abstraction leads to a situation in which applications introduce traf-
fic onto the network at-will, without regard to its impact on device
energy, networking signaling, and overall load. Even if a consci-
entious application were to try and optimize its transmissions, the
OS provides no hints on how and when to do so. Further, applica-
tions’ expectation of instantaneous communication severely limits
the OS’s or network’s ability to schedule traffic. Delays in message
delivery can be construed as an indication of failure, and trigger
undesirable responses such as quality degradation or failover.

In this paper, we propose traffic backfilling, a novel traffic schedul-
ing approach that is exposed by the OS in the form of a separate
service. The idea is to allow applications to differentiate network
transfers into interactive traffic (e.g., web browsing, instant mes-
saging) and delay-tolerant traffic (e.g., advertisement downloads,
synchronization). Today, both kinds of traffic consume the mobile
device’s energy and network resources with equal priority. In con-
trast, we propose to exploit naturally occurring network bursts due
to interactive traffic, and utilize the network resources reserved by
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Figure 1: The RRC state machine for “Carrier 1”

those bursts to interject delay-tolerant backfill traffic into the gaps
between the bursts. The aim is to obtain a “subsidized lunch” in
which a large amount of delay-tolerant traffic can utilize resources
left over by interactive and unpredictable bursts at a low marginal
cost, in terms of device energy and network signaling overhead.

Our primary contributions in this position paper are in quanti-
fying the scope of the backfilling opportunity, sketching the broad
outlines of an OS backfill API, and illustrating how existing and
new applications may leverage it. Using traces collected from a va-
riety of user devices (phones, laptops with 3G dongles) and operat-
ing systems (Mac OS X, Windows, Android), we show that tens of
additional MiBs can be transmitted via backfilling even assuming
nominally low bitrates (i.e. 256 Kbps). We refine this estimate from
a network perspective by analyzing aggregate data from a large ur-
ban area on a major carrier’s UMTS network comprising 1853 cell
sites. We find that aggregate traffic patterns at the per-cell level are
highly bursty at small timescales, and are thus amenable to back-
filling. For tens of thousand of short-term bursts of network traffic
seen by a single cell, with a median length of 16 seconds, the ra-
tio of estimated utilized network resources clusters heavily around
only 25% of the peak. With appropriate support, the extra 75% can
be reused for backfill traffic.

2. BACKGROUND
We begin by providing an overview of how resource allocation

works on UMTS (Universal Mobile Telecommunications System)
networks, and its implications for mobile device energy usage and
network signaling load. Although we focus on the most widely
used 3G technology, the basic principles remain the same for re-
lated technologies such as LTE.

UMTS mobile devices establish network connectivity through a
UMTS Terrestrial Radio Access Network (UTRAN) consisting of
base stations (or Node-Bs) and Radio Network Controllers (RNCs).
Each RNC handles a number of base stations and is responsible
for controlling network resources. The RNC allocates these re-
sources using per-device RRC (Radio Resource Control) state ma-
chines whose transitions are triggered by device traffic exchanges
and carrier-determined inactivity timers. For example, Figure 1
shows the state machine for a major US carrier with its parameters
summarized in Table 1. This state machine was inferred by the au-
thors of [12] without any carrier help, using measurements made
from mobile devices.

This state machine has an IDLE state, in which the mobile de-
vice consumes no energy on its radio, and no network resources.
Upon network use, the mobile device is promoted into a high-

FACH→ IDLE 12 s
DCH→ FACH 5 s

FACH threshold UL 540
RLC drain UL 0.0014t2 + 1.6t+ 20 ms

Buffer threshold DL 475
(bytes) drain DL 0.1t+ 10 ms
IDLE→ DCH signaling 2.0±1.0 s
FACH→ DCH signaling 1.5±0.5 s

Table 1: State machine parameters for “Carrier 1”
bandwidth, high energy consumption DCH state, in which it is
allocated a “dedicated” channel by the network. Typical signal-
ing latency for moving to DCH is two seconds, while devices con-
sume between 570 mW to 800 mW in this state [12]. After a few
seconds of inactivity, the mobile is demoted to a shared channel,
FACH, in the hopes of satisfying marginal network use with a low-
bandwidth shared channel, and lower energy usage (450mW in av-
erage). Eventually, after a second threshold of inactivity, the mobile
is downgraded from FACH back to the IDLE state. If, on the other
hand, the mobile networking activity overflows a buffer (in the Ra-
dio Link Control layer or RLC), it is promoted again to the DCH
state.

Thus, each state of the RRC state machine dictates the device’s
energy consumption and the network channels it can use. Transi-
tions between low-power states to high-power states are triggered
by network activity, whereas transitions between high-power states
to low-power states are triggered by inactivity timers. The inac-
tivity timers are necessary to preclude spurious state transitions,
which add extra delays and impose non-trivial network signaling
overheads. They are tuned by network engineers to provide a healthy
dose of hysteresis. There are as many variations on this state ma-
chine as there are carriers - with different states, different transi-
tions, and different thresholds for triggering them. But two key
elements, staged resource acquisition and hysteresis via inactivity
timers, remain across all variations [12].

With HSPA, the latest revision to UMTS, channel capacity can
be allocated at a finer granularity within the DCH state. Channel
scheduling of devices in the DCH state, both up and downlink, is
performed by RNCs with a granularity of 10ms or 2ms [14]. Thus,
once in DCH, devices use as many 10ms/2ms scheduling periods
as their traffic demands, with little spectrum waste. However, the
state machine still remains important because it determines the en-
ergy state of the mobile device modem, and the signaling caused by
transitions still places non-trivial demands on the network’s control
plane.

3. TRAFFIC BACKFILLING
We propose backfilling as a new traffic scheduling technique

that reuses unutilized gaps between bursts of traffic from interac-
tive applications to send delay tolerant traffic. The OS tracks RRC
state machine transitions that result from interactive traffic alone,
and transmits backfill traffic during periods of inactivity within the
DCH state. Such unused DCH periods exist because of the hys-
teresis imposed by the RRC state machine inactivity timers. Fig-
ure 2 shows unused periods both between gaps in bursty traffic, and
during the whole duration of the “DCH tail,” before the demotion
to the FACH state. By using such gaps profitably, the device can
exchange large amounts of additional data with little additional en-
ergy usage and signaling load.

To achieve the lowest incremental cost, backfilling should closely
track the state machine transitions that would have occurred with
interactive traffic only. Backfill traffic must be ignored when com-
puting the state machine trigger conditions (Table 1). Although the
state machine is maintained within the RNC, the trigger conditions



Figure 2: Backfilling reuses unused gaps between interactive
traffic bursts

we need can also be controlled, indirectly, entirely from the de-
vice itself through the use of fast dormancy [1]. Fast dormancy is
a mechanism to allow devices to signal an immediate DCH to the
IDLE transition to the RNC. When the OS detects that the RRC
state machine would have down-transitioned if backfill traffic were
absent, it can initiate fast dormancy to transition to the IDLE state,
thus emulating the state machine’s behavior in absence of backfill
traffic.

Improper use of fast dormancy can substantially increase the fre-
quency of RRC state changes, and overload the network control
plane by increasing signaling load [8]. Therefore, network carri-
ers often work with vendors to disable or significantly restrict the
use of fast dormancy. Preliminary investigation shows that none
of the UMTS USB dongles available for a major US carrier had
a fast dormancy API that was exposed to the OS; however, an un-
documented AT command was discovered for Infineon chipsets [9].
Unlike tail optimization approaches [12, 11, 4] that advocate short-
ening of DCH tails, our approach is compatible with such carrier
restrictions on fast dormancy since we seek to use it to preserve the
original state-machine transitions.

Delaying traffic within the mobile device only covers outbound
traffic. Handling inbound traffic entails the complexity of requir-
ing the remote sender to pause the network flow when there is no
opportunity for backfilling. For short durations, this can be accom-
plished without cooperation from the sender by using the TCP per-
sist condition [5]. Specifically, the mobile OS can “stall” (resume)
a TCP flow by advertising a zero (non-zero) length TCP receiver
window. Since the mobile device is unreachable when the flows
are stalled, network support for responding to sender probe packets
for stalled flows may be required. While all TCP implementations
are required to support zero-sized windows [5], firewalls or appli-
cations can sometimes terminate long-lived stalled connections to
reclaim resources. For such situations or UDP flows, more exten-
sive network staging of inbound flows may be needed.

The resulting delay-tolerant backfill service is an “eventually
complete” best-effort service that, at the OS or network’s discre-
tion, makes arbitrary progress in reliably transmitting a stream of
bytes to the receiver. Progress is not guaranteed - for instance, with
the proper network support, the network can ask to delay trans-
mission of backfill traffic in periods of network congestion. Con-
versely, the OS may batch and efficiently send a large chunk of
backfill traffic even in the absence of any interactive traffic. In re-
turn for the flexibility it provides in handling network congestion,
network providers may choose to provide economic incentives for
backfill data either by charging lower per-byte rates, or by counting
only a fraction of the transfer towards a user’s data cap.

4. API PROPOSAL
One important advantage of backfilling is the simplicity of the

API exposed by the OS. At its core, the backfilling API allows
applications to discriminate between interactive and delay-tolerant
traffic. We outline here a proposal for such API; without loss of
generality, we focus on Linux.

The traditional method for establishing network connections is
the socket interface, which allows for fine-grained control via the
setsockopt family of system calls. An initial setsockopt
can be used by applications to tag sockets as transmitting delay-
tolerant traffic. An application can move the connection out of
delay-tolerant queues through an explicit flag setting, or as a side-
effect of other socket control settings such as disabling Nagle’s al-
gorithm.

Unbounded wait is never desirable for delay-tolerant traffic. Most
delay-tolerant traffic expects to be transmitted “soon” as opposed
to “right now”, and perhaps a more accurate term would be “non-
urgent” traffic. Two bounds to trigger transmission of the accu-
mulated delay-tolerant traffic are wait time and bytes accumulated.
The former will trigger transmission if the oldest packet has waited
for more than N seconds; the latter will transmit once the byte
count exceeds a B threshold. Bounds will also cause the same traf-
fic aggregation effect sought by application modification in [12],
and the “taps” and “preserves” primitives of Cinder [13]. Bounds
can be applied globally, or on a per-socket basis.

So far, our discussion has been application centric. Yet, the OS
can easily detect periods of active resource reservation for which
there is no pending traffic to backfill. A callback mechanism allows
the OS to signal to applications this transient opportunity to push
further payloads on a backfilling window. The select family of
system calls provides a good conduit: it allows applications to (i)
decide when to wait, (ii) aggregate multiple events in a single wait
point, and (iii) read from the OS via a pipe additional information,
such as the size of the current backfilling window.

In the interest of successful upstreaming, particularly for a ker-
nel like Linux, we can stay away from changes to the core kernel
socket routines. Instead, we can manage buffering of payloads, ag-
gregation, and completion notification entirely within the bounds
of a user-space toolkit. The responsibilities of the kernel are lim-
ited to prioritizing packets from interactive sockets, tracking of the
RRC state machine, and notifying state changes to user-space.

4.1 Applications
On top of the OS interface, a toolkit can expose multiple user-

space primitives to simplify application interaction with the back-
filling machinery. Applications can set up staging areas for out-
bound payloads; they can set up a publish-subscribe mechanism
to be alerted of arrival of messages. Or, more generally, they can
structure themselves as event-driven loops with callbacks reacting
to backfilling activity. While existing applications can benefit from
transferring “subsidized” delay-tolerant data, we also believe back-
filling will enable applications that users may be reluctant to run
otherwise. We outline four applications and the primitives they can
leverage:

Participatory Sensing: The plethora of sensors (GPS, accelerome-
ter, camera, etc) on contemporary smart phones has resulted
in the birth of participatory sensing applications, in which
phones upload sensor readings to data-mining repositories.
Such uploads can use a staging area to aggregate data until a
backfilling opportunity arises.

Backup and Synchronization: With backfilling, backup can be
performed opportunistically and at a possibly lower price.
This is a classical example of an event-driven application,
triggering backup cycles upon availability of backfilling win-
dows.

Email and RSS: Periodic email and RSS polling have been used
frequently in the literature [4, 13] as examples of delay-tolerant
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Figure 3: DCH utilization vs. DCH time for 15 traces of varying
duration.

traffic that can be optimized for 3G networks, through the use
of staging areas (for outbound email) and publish-subscribe
pools (for inbound RSS and email).

Cloud offload: Recent proposals [10] have recommended offload-
ing security checking to cloud services, at a high data trans-
mission cost. Backfilling can turn such services into event-
driven loops and lower or eliminate transmission costs. The
amount of tolerable delay for security responses can be easily
tuned through the API.

5. THE BACKFILLING OPPORTUNITY
We build support for backfilling by measuring the size of the

opportunity in two phases. We first focus on device-centric mea-
surements, and then later extend the study to incorporate network
wide metrics.

5.1 Device-Centric Measurement
We harvested fifteen traces of UMTS networking traffic. We uti-

lized a Windows 7 laptop with an Infineon-based LG Adrenaline
data card, a Macbook Air laptop with an Option data card, and an
Android-based Samsung Captivate phone with an Infineon built-in
modem. All modems are HSPA+ capable. In each case, these de-
vices already had an owner with established usage patterns. We
simply turned on tracing, disabled WiFi and Ethernet to ensure the
UMTS network was used, and let the user continue life as usual.
The durations of the traces were randomly distributed between as
little as five minutes, to over an hour (77 minutes), to three full-day
traces (around 1420 minutes).

We used libpcap-based utilities (tcpdump, wireshark, etc) to har-
vest our data traces. Because libpcap presents packets as seen by
the OS, HSPA-level MAC headers and retransmissions are not cap-
tured. We then fed the traces to an emulated UMTS radio re-
source state machine, following the parameters of Figure 1 and
Table 1 [12]. Assuming the traffic had occurred in the Carrier 1
network (we do not know whether that is the case), we calculated
the time spent by the network devices in DCH and FACH modes,
as well as the bytes transmitted in each case.

The numbers obtained are consistent with measurements in the
literature [12, 11]. DCH tail times hover around 20%. Backfilling
opportunities are not limited to DCH tails – any significant gap in
network use during a DCH state can be used. For example, one of
our traces corresponds to roughly 75 minutes of watching a Hulu
video. The UDP traffic from Hulu peers prevents the modem from
ever leaving the DCH state. Yet, packet inter-arrival times of two
seconds are not uncommon.

In Figure 3 we plot each trace, sorted by the amount of time spent
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Figure 5: Random five second period in Figure 4.

in DCH state, against the global DCH bitrate in Kbps (i.e. bits sent
and received in DCH, divided by DCH time). Rarely does a trace
exceed 150 Kbps of global DCH bitrate. Most traces accumulate
longer than 10 minutes of DCH time, with a trace showing as little
as 25 Kbps over 11 minutes. Clearly, the opportunity for backfill-
ing while spending marginal additional energy is present, even for
nominal channel capacity as low as 384 Kbps, which was already
achievable a decade ago [2]. At that capacity, most of our traces
could push over 20 MiBs of backfill traffic.

5.2 Network-Centric Measurements
To complement the view from the device perspective, we now

turn to network traces. We show results from a UMTS provider in
a major US urban area for May 15th 2011. The data feed we ob-
tained is decomposed by RNC, by Node-B within each RNC, and
by mobile within each cell, totaling 1853 Node-Bs and 130653 mo-
bile users. The data for each mobile consists of the number of kilo-
bits sent and received for every second for which there was DCH
activity (i.e., the data demand). Due to business reasons, we can-
not reveal the urban area, nor the absolute capacity measurements
– hence all numbers are expressed as ratios and percentages.

In Figure 4 we chose a particular cell that experienced a high
degree of activity. We plot the demand per second over the full
day, expressed as a ratio of the peak, which is achieved at about
7:42pm. We note the high short term variance in demand, which
reveals a substantial opportunity for backfilling. Figure 5 zooms
into a five second period (starting at 10 thousand seconds) to reveal
the abundance of short-term valleys of low utilization.

Feeding the data harvested for each individual mobile to a state
machine emulator gives a finer-grained picture. For each mobile
and each DCH period, we can calculate spare capacity that can be
reused for backfilling. The individual peak bitrate actually achieved
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by each mobile device in each DCH period is used as a proxy for
the maximum achievable bitrate. This is a conservative estimate,
and therefore our estimates of the backfilling opportunity are also
conservative. Figure 6 plots the ratio of the used capacity to total
capacity for each DCH period in each mobile. The relative capacity
utilized is largely independent of the length of the DCH periods,
and clusters heavily around 25%. In other words, for most DCH
periods, three additional bytes could have been backfilled for each
byte transmitted over UMTS, at marginal additional energy cost for
the device.

Finally, Figure 7 shows a cumulative distribution function (CDF)
of the ratio of the unused DCH capacity represented by DCH tails.
The plot shows that over half the opportunities for backfilling lie
beyond the DCH tails, with unused capacity available in the “spaces
in between” in a transmission stream. The median ratio represented
by DCH tails is slightly over 40% of the unused DCH capacity. The
CDF shows that for roughly 15% of the DCH periods, the DCH tail
represents all unused capacity. For such instances, the period of ac-
tive DCH use is the minimum quantum recorded by our tracing ma-
chinery, thus representing isolated single-shot bursts of networking
activity.

6. CONCLUSIONS
In this position paper we have argued for traffic backfilling as

a means to allow applications to optimize their interactions with
wireless cellular networks. With backfilling, delay-tolerant traf-
fic can be transmitted leveraging the unused resources left over by
bursts of interactive and urgent foreground application traffic. We
have shown through device traces and network data from a major
US carrier that there is ample opportunity for traffic backfilling to-
day, at a marginal cost both from a network signaling and device
energy standpoint. Our future work focuses on realizing the impli-
cations of this position paper, and enabling new mobile applications
otherwise thought to be impractical.
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