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ABSTRACT

Disaster Recovery (DR) is a desirable feature for all enterprises,
and a crucial one for many. However, adoption of DR remains lim-
ited due to the stark tradeoffs it imposes. To recover an application
to the point of crash, one is limited by financial considerations, sub-
stantial application overhead, or minimal geographical separation
between the primary and recovery sites. In this paper, we argue
for cloud-based DR and pipelined synchronous replication as an
antidote to these problems. Cloud hosting promises economies of
scale and on-demand provisioning that are a perfect fit for the in-
[frequent yet urgent needs of DR. Pipelined synchrony addresses the
impact of WAN replication latency on performance, by efficiently
overlapping replication with application processing for multi-tier
servers. By tracking the consequences of the disk modifications
that are persisted to a recovery site all the way to client-directed
messages, applications realize forward progress while retaining
full consistency guarantees for client-visible state in the event of
a disaster. PipeCloud, our prototype, is able to sustain these guar-
antees for multi-node servers composed of black-box VMs, with no
need of application modification, resulting in a perfect fit for the ar-
bitrary nature of VM-based cloud hosting. We demonstrate disaster
failover to the Amazon EC2 platform, and show that PipeCloud can
increase throughput by an order of magnitude and reduce response
times by more than half compared to synchronous replication, all
while providing the same zero data loss consistency guarantees.
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1. INTRODUCTION

Businesses and government enterprises utilize Disaster Recov-
ery (DR) systems to minimize data loss as well as the downtime
incurred by catastrophic system failures. Current DR mechanisms
range from periodic tape backups that are trucked offsite, to contin-
uous synchronous replication of data between geographically sep-
arated sites. Typical DR solutions incur high infrastructure costs
since they require a secondary data center for each primary site
as well as high bandwidth links to secondary sites. Further, the
“larger” the potential impact of a disaster, the greater is the need
for geographic separation between the primary and the secondary
replica site. The resulting wide area latency can, however, place a
large burden on performance.

The recent emergence of commercial cloud computing has made
cloud data centers an attractive option for implementing cost-effective
DR due to their “resource-on-demand” model and high degree of
automation [26]. During normal operation, the cost of providing
DR in the cloud can be minimized, and additional resources only
need to be brought online—and paid for—when a disaster actually
occurs. In addition, the cloud platform’s ability to rapidly acti-
vate resources on-demand helps minimize the recovery cost after a
disaster. The automation that is designed into accessing cloud ser-
vices enables the DR service to support Business Continuity, with
substantially lower recovery times.

Despite these attractive economics, a major barrier to using cloud
data centers for DR is their large geographic separation from pri-
mary sites—the increased latency in communicating with distant
cloud sites can become a major performance bottleneck. This is
amplified by the limited control cloud users have over the actual
placement of their cloud resources. Consequently, a synchronous
replication scheme will expose every data write to the performance
impact of this wide-area latency, forcing system administrators to
seek alternative solutions. Often, such alternatives trade off loss of
data for performance by using asynchronous replication, in which
a consistent “snapshot” is replicated to the backup site. Asyn-
chronous replication improves performance since the primary site
can proceed without waiting for the replication to complete. How-
ever, disk writes at the primary site subsequent to the last replicated
snapshot will be lost in case of a disaster. Consequently, to im-
plement cloud-based DR for mission-critical business applications,
we must design a mechanism that combines the performance ben-
efits of asynchronous replication with the no-data-loss consistency
guarantee of synchronous replication.

We propose Pipelined Synchronous Replication as an approach
to provide high performance disaster recovery services over WAN




links connecting enterprises and cloud platforms. Pipelined syn-
chrony targets client-server style applications, and exploits the fun-
damental observation that an external client is only concerned with
a guarantee that data writes related to its requests are committed to
storage (both at the primary and the secondary) before a response
is received from the system. Because it can potentially take a large
amount of time for the secondary site to receive the write, com-
mit and acknowledge, there is a substantial opportunity to overlap
processing during this time interval which synchronous approaches
ignore. The opportunity is even more compelling when we observe
that multi-tier applications can take advantage of pipelined syn-
chronous replication by overlapping remote replication with com-
plex processing across the multiple tiers that are typical in such en-
vironments. The key challenge in designing pipelined synchrony
is to efficiently track all writes triggered by processing of a re-
quest as it trickles through the (multi-tier) system, and to inform
the external entity (i.e., a client) only when all these writes have
been made “durable”. We achieve this by holding up network
packets destined for the client until all disk writes that occurred
concurrently with request processing have been acknowledged by
the backup. This approach imposes causality (i.e., via Lamport’s
happened-before relation) across externally-bound network pack-
ets and disk writes, providing the same consistency guarantee as if
the disk writes had been performed synchronously. Since we seek
to implement pipelined synchrony in an Infrastructure-as-a-Service
(IaaS) cloud environment that relies on Virtual Machines (VMs) to
encapsulate user applications, an additional challenge is to employ
black-box techniques when providing cloud-based DR.

Our work combines ideas from storage replication, speculative
execution, and distributed systems. Our replication scheme builds
upon the external synchrony observations by Nightingale et al. [18]:
That the dichotomy between synchronous and asynchronous stor-
age is only relevant to the external visibility of storage events, and
thus can be efficiently hidden from clients in many cases. Our fo-
cus on VM black-boxes also draws inspiration from the specula-
tive execution concepts used in Remus [6] to provide high avail-
ability within the LAN. We extend the notions of external syn-
chrony [18] and single-VM LAN-based high availability in Re-
mus [6] to implement cloud-based disaster recovery over WANs
for multi-VM multi-tier or distributed applications. Finally, we use
a communication-based mechanism enforcing causality as defined
by Lamport’s happened-before relation [13], that borrows tech-
niques from eventually consistent distributed systems [4, 12, 23].

Our pipelined synchronous replication-based disaster recovery
system, PipeCloud, effectively exploits cloud resources for a cost-
effective disaster recovery service. PipeCloud makes the follow-
ing contributions: (i) a replication system that offers clients syn-
chronous consistency guarantees at much lower performance cost
by pipelining request processing and write propagation; (ii) a com-
munication based synchronization scheme that allows the state of
distributed or multi-tier applications to be replicated in a consis-
tent manner; (iii) a formal analysis of the consistency guarantees
of pipelined synchrony; (iv) an implementation that efficiently pro-
tects the disks of virtual machines without any modifications to the
running applications or operating system; and (v) a thorough eval-
uation of PipeCloud’s performance in normal operating conditions
and when using Amazon EC2 to recover from a disaster.

Our results illustrate the significant performance benefits of us-
ing pipelined synchrony for disaster recovery. PipeCloud substan-

tially lowers response time and increases the throughput of a database

by twelve times compared to a synchronous approach. When pro-
tecting the TPC-W E-commerce web application with a secondary
replica 50ms away, PipeCloud reduces the percentage of requests

violating a one second SLA from 30% to 3%, and provides through-
put equivalent to an asynchronous approach. PipeCloud can repli-
cate state to backups sites S0ms further away than synchronous
replication, providing improved application throughput while in-
creasing the resiliency to large-scale disasters. We demonstrate that
PipeCloud offers the same consistency to clients as synchronous
replication when disasters strike, and evaluate the potential of us-
ing cloud services such as EC2 as a backup site.

2. DISASTER RECOVERY CHALLENGES

The two key metrics that determine the capabilities of a Disas-
ter Recovery (DR) system are Recovery Point Objective (RPO) and
Recovery Time Objective (RTO). The former refers to the accept-
able amount of application data that can be lost due to a disaster:
a zero RPO means no data can be lost. RTO refers to the amount
of downtime that is permissible before the system recovers. A zero
RTO means that failover must be instantaneous and transparent and
is typically implemented using hot standby replicas.

In scenarios where a small downtime is tolerable (i.e., RTO>0),
the cost of DR can be reduced substantially by eliminating hot
standbys. The limiting factors in optimizing the RTO in this case
depend on engineering considerations: how swiftly can we provi-
sion hardware resources at the backup site to recreate the applica-
tion environment? Once resources have been provisioned, what is
the bootstrapping latency for the application software environment?
Since disasters happen mid-execution, is a recovery procedure such
as a file system check necessary to ensure that the preserved appli-
cation data is in a usable state? As indicated earlier, leveraging
cloud automation can significantly improve the RTO metric; we
have also shown that the cloud’s economics driven by on-demand
resource utilization are a natural fit for substantially lowering the
cost of DR deployments [26].

Next, in § 2.1, we discuss the impact of latency between the pri-
mary and secondary sites on the RPO that can be achieved with dif-
ferent replication strategies. In § 2.2 we introduce a broader RPO
definition which takes into consideration the client’s view of a DR
system. Finally, in § 2.3 we describe the specific DR operational
assumptions and system model considered in our work.

2.1 Replication Strategies and Latency

When preserving stored data to a secondary location, the net-
work round trip time (RTT) between the primary and secondary
locations significantly impacts the choice of replication algorithm,
and thus, the ability to provide an RPO as close as possible to zero
(i.e., no data loss). Latency considerations lead to a choice be-
tween two primary modes of data replication for disaster surviv-
ability: synchronous and asynchronous replication [9]. With syn-
chronous (sync) replication, no data write is reported as complete
until it has succeeded in both the primary and secondary sites. With
asynchronous (async) replication, writes only need to succeed lo-
cally for the application to make progress, and they will be trickled
back opportunistically to the secondary replica. The timelines in
Figure 1 (a) illustrate the behavior of sync and async replication.

With sync replication, applications obtain an RPO of zero by
construction: no application progress is permitted until data has
been persisted remotely. However, a higher latency results in cor-
responding increase in the response time and lower throughput for
client-server type applications. Figure 2 (a) shows the performance
impact of increasing the latency between the primary and backup
sites. For this experiment, we used DRBD [14], a standard block
device replication tool which supports both sync and async modes,
to protect a MySQL database. The response time of performing
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Figure 1: Replication strategies. (a) Existing approaches: Syn-
chronous and Asynchronous replication. (b) Pipelined Syn-
chronous Replication.
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Figure 2: (a) Latency significantly reduces performance for
synchronous replication. Table (b) lists round trip latency and
approximate distance from UMass to Amazon data centers.

inserts into the database increases linearly with the RTT. Even for
relatively short distances, e.g., from Massachusetts to the EC2 data
center in Virginia (16msec, Figure 2 (b)), the response time de-
grades noticeably. For these reasons, while mission-critical appli-
cations need to resort to synchronous replication, they incur a high
performance cost. To mitigate this overhead, the secondary site
is often chosen to be geographically close (within tens of km) to
the primary. However, replication to nearby facilities is unlikely to
withstand many kinds of disasters that have struck infrastructure in
recent memory: hurricanes, earthquakes and tsunamis, and regional
energy blackouts. Legislative attempts to enforce backup distances
of a few hundred kilometers have failed due to technical consid-
erations. As a result, the positioning of the secondary site must
balance the requirement of being a safe distance from the primary
against the overhead incurred by longer distance links. For exam-
ple, many Wall Street companies replicate to data centers within
a geographical “doughnut” that ranges from thirty to seventy kilo-
meters around downtown Manhattan [11]. Unfortunately, having
that tight a control over data center placement is typically impossi-
ble when using cloud resources as clients have only coarse control
over their location (e.g., EC2 offers two datacenters, “East coast”
and “West coast”, in the U.S.).
The alternative is Asynchronous replication, which sacrifices RPO
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Figure 3: Relationship between application views under differ-
ent replication algorithms. In particular, SV and CV relations
define the RPO guarantees upon disaster.

guarantees, as illustrated with the “unsafe replies” of the second
timeline in Figure 1 (a). However, asynchrony also decouples ap-
plication performance from data preservation. System builders are
thus afforded great leeway in how to schedule transfer of state to
the secondary site. The area of asynchronous replication has thus
been a fertile ground for optimization research [10, 9] that explores
the tradeoffs between replication frequency, application RPO de-
mands, financial outlay by application owners, and possibly even
multi-site replication as outlined above. Fundamentally, however,
async replication exposes applications to a risk of inconsistency:
clients may be notified of a request having completed even though
it has not yet been preserved at the backup and may be lost in a
disaster. Further, the number of these “unsafe replies” increases as
latency rises since the backup lags farther behind the primary.

2.2 Client RPO Guarantees

To better illustrate the impact of replication algorithm on appli-
cation consistency, we formalize here our notion of Client RPO
guarantees. We define three views of the application state: the pri-
mary site view (PV), the secondary site view (SV), and the external
clients view (CV), and we illustrate their relationship in Figure 3.

In both synchronous and asynchronous replication, the SV is a
subset of the PV: the SV lags in time behind the PV, and reflects
a past state of the application data. For asynchronous replication
the delta between SV and PV can be arbitrarily large, although in
practice it is often bounded by an unpredictable buffer size. For
synchronous replication, the delta is at most one write (or one log-
ical write, if we consider a set of scatter-gather DMA writes issued
concurrently as one single logical packet): an application cannot
make further progress until that write is made durable at the sec-
ondary. In all cases, the CV is also a subset of the PV, since the
primary performs local processing before updating clients.

The key difference resides in the delta between CV and SV. In
asynchronous replication, clients are acknowledged before writes
are made durable, and thus the SV is a subset of the CV, reflecting
the non-zero RPO. In synchronous replication, clients are acknowl-
edged only after writes have been persisted remotely, and thus the
CV is a subset of the SV. As shown in Figure 3, Pipelined Syn-
chrony, which we present in §3, maintains the same client RPO
guarantees as synchronous replication.

2.3 System Model

Our work assumes an enterprise primary site that is a modern
virtualized data center and a secondary site that is a cloud data cen-
ter; the cloud site is assumed to support Infrastructure-as-a-Service
(TaaS) deployments through the use of system virtualization. The
primary site is assumed to run multiple applications, each inside
virtual machines. Applications may be distributed across multiple
VMs, and one or more of these VMs may write data to disks that
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require DR protection. Data on any disk requiring DR protection
is assumed to be replicated to the secondary site while ensuring the
same client RPO guarantees as sync replication. We assume that
a small, non-zero RTO can be tolerated by the application, allow-
ing us to leverage cloud automation services to dynamically start
application VMs after a disaster. We further assume that applica-
tion VMs are black-boxes and that we are unable to require spe-
cific software or source code changes for the purposes of disaster
recovery. While this makes our techniques broadly applicable and
application-agnostic, the price of this choice is the limited “black-
box” visibility into the application that can be afforded at the VM
level. Our mechanisms are, however, general, and could be imple-
mented at the application level.

Despite adhering to a black-box methodology, we require ap-
plications to be well-behaved with respect to durability. For ex-
ample, we cannot support a MySQL database configured with the
MyISAM backend, which does not support transactions (and dura-
bility), and replies to clients while writes may still be cached in
memory. More broadly, applications should first issue a write to
storage, ensure such write has been flushed from memory to the
disk controller, and only then reply to a client the result of an op-
eration. Synchronous replication cannot guarantee adequate data
protection without this assumption, and neither can our approach.

3. PIPELINED SYNCHRONY

Given the WAN latencies between the primary and a secondary
cloud site, we seek to design a replication mechanism, as part of
an overall DR solution, that combines the performance benefits of
async replication with the consistency guarantees of sync replica-
tion. To do so, we must somehow leverage the overlapping of repli-
cation and processing that is typical of asynchrony, while retaining
the inherent safety of synchronous approaches.

We make two primary observations. First, from the perspec-
tive of an external client it does not matter if the transmission of
the write and the processing overlap, as long as the client is guar-
anteed that the data writes are durably committed to the backup
before it receives a reply. Second, the potential for performance
improvements compared to synchronous replication is substantial
when there is a large delay to overlap, as is the case of DR systems
with high WAN latencies. The case becomes stronger for multi-
tiered applications and, more generally, clustered applications or
distributed systems interfacing with external clients via some form
of frontend. These applications often require complex processing
across multiple tiers or components. We apply these observations
to realize a technique called pipelined synchronous replication.

3.1 Pipelined Synchronous Replication

Pipelined synchronous replication is defined as blocking on an

externally visible event until all writes resulting from the (distributed)

computation that generated the external event have been commit-

ted to disk at the primary and the secondary. When processing a
request, pipelined synchronous replication allows overlapping of
computation and remote writes—i.e., writes to the secondary are
asynchronous and pipelined with the remote writes, allowing sub-
sequent processing to proceed. Upon generating an externally visi-
ble event (such as a network packet or a reply), however, the event
must be blocked, and not released to the client until all pending
writes have finished. In essence, our approach mitigates the per-
formance penalties associated with speed-of-light delays by over-
lapping or pipelining computation and remote writes, like in async
replication, while ensuring the same relation between client view
and secondary view as synchronous replication. Figure 1 (b) de-
picts an illustrated timeline of the pipelined synchronous approach.

To contrast pipelined synchronous replication with existing repli-
cation strategies, consider the illustrative example in Figure 4. Here
a client, Alice, goes through the process of buying a ticket from a
travel website, by submitting her credit card information in step 1.
As is common, Alice interacts with a frontend web server which
may perform some processing before forwarding the request on to
a backend database (step 2) to record her purchase. In step 3, the
DB writes the transaction to disk. Since this is critical state of
the application, in step 4 the disk write is also replicated across a
WAN link to the backup site, to be preserved. Here the system
behavior depends on the type of replication used. With sync repli-
cation, the system would wait for the replication to complete (i.e.,
for the acknowledgement from the remote site in step 7), before
continuing processing (step 5) and responding to the client (step
6). With async replication the system would immediately continue
with steps 5 and 6 after the DB write has succeeded locally, defer-
ring the replication in step 4 for later. In contrast, with pipelined
synchronous replication, the transfer in step 4 is performed imme-
diately yet asynchronously, allowing the database to return its re-
ply to the front tier server in step 5 concurrently. The front tier
continues processing the request, for example combining the ticket
information with a mashup of maps and hotel availability. Eventu-
ally, in step 6, the web tier produces a reply to return to Alice. In
the pipelined synchrony case, this reply cannot be returned to the
client until the database write it was based on has been persisted to
the remote site. Only after step 7 completes and the remote server
has acknowledged the write as complete can the reply to the client
be released (step 8) and returned to Alice’s web browser to show
her the purchase confirmation (step 9).

The use of pipelined synchrony means that steps 5 and 6, which
may include significant computation cost, can be performed in par-
allel with the propagation of the disk write to the backup site. This
can provide a substantial performance gain compared to synchronous
replication which must delay this processing for the length of a net-
work round trip. Since Pipelined Synchrony defers replying to Al-
ice until after the write is acknowledged in step 7, she is guaranteed
that the data her reply is based on has been durably committed.

Thus the key challenge is to track which durable write requests,
i.e., those that need to be persisted to the secondary site, are causally
related (dependent) on which externally-visible network packets.
In other words, Pipelined Synchrony replication must guarantee
a causal ordering between externally-visible and durable events
as defined by Lamport’s happened-before — relation [13]: if any
write request — a network packet, then the write must complete
before the packet is released.

To intuitively understand how such dependencies can be tracked,
first assume a global clock in the system. Further assume that ev-
ery write is timestamped using this global clock. In this case, a
total ordering of all events is obtained. Hence, if a network packet
is generated at time ¢, then it is sufficient to hold this packet until
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all disk writes that have a timestamp < ¢ have finished at the sec-
ondary site. Observe that not all of these writes are causally related
to the network packet; however, by waiting for all previously issued
writes to complete at the secondary, we ensure that all causally re-
lated writes will also finish, thereby ensuring safety.

In practice, a multi-tier application does not have the luxury of a
global clock and techniques such as Lamport’s logical clocks only
yield a partial, rather than a total, ordering of events. Thus we must
devise a scheme to perform this timestamping, using logical clocks,
so as to identify and track causally dependent writes in multi-tier
distributed applications. The problem is further complicated by the
fact that our approach provides black box protection of VMs.

3.2 PipeCloud

In this section we present the design of PipeCloud, our pipelined-
synchronous disaster recovery engine, while in § 4 we elaborate on
the implementation details. As explained above, in a single VM
application, the local machine clock may be used as a global clock,
allowing a simple approach for tracking writes that are causally
dependent on a network packet. This can be easily extended to
support multi-tier applications with only a single protected writer,
but becomes more complex for multi-tier multi-writer applications.
We first explain the case of providing DR protection to a multi-tier
application with a single writer in § 3.2.1, and then generalize to
the multi-tier, multi-writer case in § 3.2.2.

3.2.1 Single Writer Protection

Our primary target is the classical multi-tier web service, e.g.,
an Apache, application, and database server setup (a.k.a. “LAMP”
stack). Most services structured this way use web servers as fron-

tends to serve static content, application servers to manipulate session-

specific dynamic content, and a DB as a data backend. In this case,
the only tier that is necessary to protect in our model is the DB.
This benefits our approach because further work performed by the
upper tiers can be overlapped with the replication of DB writes.
To protect application state while allowing computation to over-
lap, we must track which outbound network packets (externally-

visible events) depend on specific storage writes that are made durable

at a backup site. We assume that PipeCloud is running in the VMM
of each physical server and is able to monitor all of the disk writes
and network packets being produced by the VMs. PipeCloud must
(1) replicate all disk writes to a backup server, (ii) track the order of
disk writes at the primary site and the dependencies of any network
interaction on such writes and (iii) prevent outbound network pack-
ets from being released until the local writes that preceded them
have been committed to the backup.

The procedure described above relies on being able to propagate
information about disk writes between tiers along with all commu-
nication, and is depicted in Figure 5. We divide the tiers along

three roles, namely writer, intermediate and outbound; to simplify
exposition, Figure 5 shows one intermediate and outbound tiers, but
there could be multiple tiers assuming those roles. Each tier main-
tains its own logical pending write counter, i.e., WCnt, ICnt and
OCnt. Note that W Cnt represents the true count of writes per-
formed to the disk, while OCnt and ICnt represent the (possibly
outdated) view of the disk state by the other tiers. In addition, the
backup maintains a committed write count, CommitCnt. These
counters are essentially monotonically increasing logical clocks,
and we use these terms interchangeably.

Without loss of generality, assume all counters are zero when the
system receives the first client request, which propagates through
the tiers, ultimately resulting in a DB update at the writer tier. The
writer tier increases the value of its pending counter after it has per-
formed a local write, and before that write is issued to the backup
site. Each tier appends the current value of its pending count to
all communication with other elements in the system. Thus the
writer tier propagates its pending counter through the intermediate
nodes so they can update their local view: the pending counter at
each non-writer tier is updated to the maximum of its own pending
clock, and any pending clocks it receives from other tiers.

On receiving the write request from the writer tier at the primary
site, the DR system at the backup site will commit the write to disk
and then increase its committed write counter. The current value of
the committed counter is then communicated back to the outbound
node(s) at the primary site.

The outbound tier implements a packet buffering mechanism,
tagging packets destined to external clients with its own version of
the pending counter, OCnt, as this represents the number of system
writes which could have causally preceded the packet’s creation.
Packets can be released from this queue only when their pending
clock tag is less than or equal to the committed clock received from
the backup site. This guarantees that clients only receive a reply
once the data it is dependent on has been saved. Finally, note that
protection of the single VM case is covered by this scheme: the
single VM becomes both a writer and outbound node.

3.2.2  Multiple Writer Protection

The most challenging case is when the application is in effect a
distributed system: multiple nodes cooperate, and more than one of
the nodes issue writes that need to be persisted. Examples include
a LAMP stack with a master-master DB replication scheme or a
NoSQL-style replicated key-value store.

We cater to this case by extending the notion of a logical counter
to a count vector maintained by each node'. The pending write
count for node ¢ thus becomes the vector P; =< pi,...,pn >,
with an entry for each of the n writers in the system. When issuing
disk writes, node 4 increments its local counter in P;[z]. All pack-
ets are tagged with the count vector of pending writes, and local
knowledge is updated with arriving packets by merging the local
and arriving vectors: each entry becomes the maximum of the ex-
isting and arriving entry. By exchanging information about writes
in this way, the entry P;[j] indicates the number of writes started
by node j that ¢ is aware of. Thus at any given time, the pend-
ing count vector represents the write frontier for node i—the set
of writes at other nodes and itself that any computation or network
packet might be causally dependent on. Note that non-writer nodes
never increment write counts, only merge on packet reception, and
that the single-writer case equates to a single-entry count vector.

In this manner, causality spreads across the system in a gossiping

'Our count vector is similar to a vector clock [16], but vector clocks
are traditionally updated on every message send or receive, while
ours only count disk writes events, similar to [12].
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Figure 6: Multi-writer case with count vectors.

or anti-entropy manner [12, 23], all the way to outbound packets.
As before, an outbound packet is tagged with the pending count
vector at the moment of its creation. Outbound nodes maintain sim-
ilar count vectors of committed writes C; =< ¢, ..., ¢, >, which
represent the set of writes known to have been safely persisted. A
client-bound packet can only be released once every entry in C;
is greater than or equal to that in the packet’s tag. This approach
allows for a partial ordering of unrelated writes and network pack-
ets, but it guarantees that no packet is released until any write it is
causally related to has been committed.

Figure 6 illustrates a multi-writer system. The DB and Web tiers
issue writes that are persisted to the secondary in steps 3 and 4,
respectively. The web tier generates an outbound packet with no
knowledge of the DB write (step 5), that is buffered. A causal chain
of communication emanates all the way from the DB to another
outbound buffered packet, in steps 6 to 8. Acknowledgement of
write commits arrive out of order, with the web tier write arriving
first (step 9) and thus allowing the outbound packet dependent on
the web write (but not on the DB write) to leave the system in step
10. Finally, when the DB write is acknowledged in step 11, the
packet buffered in step 8 leaves the system in step 12.

3.3 Other DR Considerations

We end the design section by enumerating some aspects of a full
disaster recovery solution that lie outside the scope of this paper.

Detecting Failure: The usual approach to deciding that disaster
has struck involves a keep-alive mechanism, in which the primary
has to periodically respond to a ping message [15]. We note our
system is no different from other DR solutions in this aspect.

Failure in the secondary: Failure of the secondary site, or a net-
work partition, will impede propagation of data writes. Without a
suitable remedial measure, externally-visible application response
will be stalled waiting for replies. PipeCloud is no different from
sync replication in this aspect: a reverse keep-alive is usually em-
ployed to trigger a fallback to async replication.

Memory Protection: We protect only the application state recorded

to disk at the primary site. We assume that applications can be fully
restored from disk in the case of disruption, as in standard database
behavior. We do not attempt to protect the memory state of applica-
tions as this entails a significant overhead in WANs. Remus [6] is
able to provide memory and disk protection within a LAN, but re-
quires significant bandwidth and minimal latency. Our experiments
with Remus in an emulated WAN environment with 100ms of RTT
from primary to backup, show that average TPC-W response times
exceeded ten seconds and replication of both disk and memory con-
sumed over 680 Mbps of bandwidth. Providing Remus-like black-
box memory protection over WAN remains an open problem due
to these performance issues.

Transparent handoff and RTO: Our focus is on ensuring that
storage is mirrored to the backup site and minimizing RPO. As
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Figure 7: PipeCloud’s implementation components.

shown before [26], when disaster strikes our backup system uses
existing VM automation techniques to rapidly instantiate compute
resources and recover application state. Enabling seamless net-
work redirection to the secondary site requires network virtualiza-
tion mechanisms such as NAT, MobilelP, or MPLS VPNs. Because
our storage replication is crash-consistent, disk checking utilities
like fsck or self-consistent file systems like ZFS must be used.

4. IMPLEMENTATION

Our PipeCloud prototype is split between a replication-aware
virtualization system that is run at the primary site and a backup
server at the cloud backup location. PipeCloud requires modifica-
tions to the virtualization platform at the primary, but only needs
to run a simple user space application at the backup. This allows
PipeCloud to be used today on commercial clouds which do not
give users control over the low level platform.?

At the primary site, PipeCloud is based on the Xen Virtual Ma-
chine Monitor (VMM) version 4.0.0. VMs in Xen perform 10 us-
ing a split driver architecture with components in the guest operat-
ing system (OS) and dom0, a privileged domain that runs hardware
drivers and a control stack. Frontend drivers in the VM’s OS is-
sue requests through shared memory and virtual interrupt lines to
backend drivers. The backend drivers in domO unpack the requests
and re-issue them against the hardware drivers. As depicted in Fig-
ure 7, our implementation only requires hooks at the level of virtual
backend drivers; NetQueue and DR Blocktap in the figure. While
we chose Xen due to familiarity, we do not foresee any problems
porting our approach to VMMs like kvm or VMware ESX. While
the majority of our code is new extensions to the base Xen distribu-
tion, we also utilize the packet queueing mechanism from Remus
(the sch_queue kernel module) to simplify our implementation of
network buffering [6]. The Remus code holds and releases groups

“Note, however, that current clouds do not yet support mechanisms
that would facilitate seamless fail-back to the original site after the
disaster has passed. Without support for migration out of the cloud,
the fail-back procedure would need to be scheduled for a time that
minimizes the impact of application downtime.



of packets for each checkpoint interval; we have extended this to
support finer grain control based on our logical clocks.

In keeping with the goal of a black-box approach, we do not
mandate source code changes within protected VMs. However,
we benefit from information regarding application deployment; we
term this configuration gray box. We need a specification of the
topology of the multi-tier application being persisted: which VMs
make up the system, identified by their IP or MAC addresses; which
VMs (or virtual disks) need to be persisted, e.g., the data disk of the
DB VMs; and which nodes are allowed to perform outbound com-
munications, e.g., the load-balancer gateway, or the Apache pool.
We expect that VMs for which storage needs to be persisted will
be backed by two sets of virtual disks: one storing critical applica-
tion data, such as a DB bit store; and the other backing temporary
files, and other miscellaneous non-critical data. Given our black
box nature, this setup alleviates replication overhead (and noise) by
differentiating critical disk writes which must be preserved to the
backup site. All the information we require is deployment-specific,
and provided by the sys-admin who configured the installation (as
opposed to a developer modifying the code).

We structure this section following the nomenclature described
in § 3.2.1. We first describe the implementation details for writer
nodes, then intermediate and finish with outbound nodes. We close
with a discussion of the secondary site backup component.

4.1 Replicating Disks — VM Side

To track disk writes and replicate them to the backup server,
PipeCloud uses a new virtual disk driver backend which we dub DR
Blocktap. This is a user-space dom0 daemon utilizing the blocktap
Xen infrastructure. As a VM performs reads or writes to its pro-
tected disk, the requests are passed to our disk driver. Read requests
are processed as usual.

Writes, however, are demultiplexed: they are issued both to local
storage and sent through a socket to the remote site. After issuing
each write, the local logical clock of pending writes, maintained as
a kernel data structure in domO, is increased. Local writes are then
performed with caching disabled, so requests do not return until
DMA by the local hardware driver has succeeded. At this point,
we indicate to the VM that the write has completed, regardless of
the status of the write traveling to the secondary site.

We note that typical OS behavior (Windows or UNIX) consists
of issuing multiple writes simultaneously to leverage scatter-gather
DMA capabilities. There are no expectations about ordering of
writes in hardware, and a successful response is propagated up-
stream only after all writes in the batch have succeeded. In the ab-
sence of disk synchronization barriers (a hardware primitive that is
not yet supported in Xen virtual drivers), the OS achieves sync () -
like behavior by waiting for the batch to finish. We tag each indi-
vidual write in a batch with its own value, and thus need to re-
spect write ordering, when processing backup acknowledgements,
to maintain the expected sync () semantics.

4.2 Propagating Causality

In order to track causality as it spreads throughout a multi-tier
system, we need to propagate information about disk writes be-
tween tiers along with all communication. Our implementation
does this by injecting the value of the local logical clock into packet
headers of inter-VM communication, specifically through the addi-
tion of an IP header option in IP packets.

Virtual networking in Xen is achieved by creating a network in-
terface in dom0. This interface injects in the domO network stack
replicas of the Ethernet frames emanating from the VM. It repli-
cates a frame by first copying to the dom0 address space the Ether-

net, IP and TCP headers. By copying these bytes, dom0 can now
modify headers (e.g., to realize NAT or similar functionality). The
remainder of the packet is constructed by mapping the relevant VM
memory pages read-only.

For our purposes, we split the copying of the header bytes right
at the point of insertion of an IP header option. We construct our
option, relying on an unused IP header option ID number (0xb).
The IP header option payload simply contains the logical clock.
We then copy the remaining header bytes. We do not introduce any
extra copying, mapping, or reallocation overhead when expanding
packets in this way. We modify length fields in the IP header, and
recalculate checksums. Typically, the VM OS offloads checksum
calculations to “hardware”, which in reality is the backend virtual
driver. Therefore, we do not incur additional overhead in the data
path by computing checksums at this point.

Not all packets are tagged with the logical clock. Non-IP pack-
ets are ignored; in practice, non-IP packets (ARP, STP, etc) do not
represent application-visible messages. Packets that already con-
tain an IP header option are not tagged. This was done to diminish
implementation complexity, but is not a hard constraint — in prac-
tice, we do not frequently see packets containing an IP header op-
tion. Optionally, empty TCP segments may not be tagged. These
typically refer to empty TCP ACKS, which do not affect causality
because they do not represent application-visible events. Nagle’s
algorithm and large bandwidth-delay products mean that success of
awrite () syscall on a TCP socket only guarantees having copied
the data into an OS buffer. Additionally, most application protocols
include their own application-level ACKs (e.g. HTTP 200). Empty
TCP segments with the SYN, FIN, or RST flags, which do result in
application visible events, are tagged.

We also considered using a “tracer” packet to communicate log-
ical clock updates to other tiers. We ruled this out primarily due to
the need to ensure correct and in-order delivery of the tracer before
any other packets are allowed to proceed. Our approach, instead,
does not introduce new packets, is resilient to re-ordering since log-
ical clocks are only allowed to increase, and ensures that as long as
existing packets are delivered, logical clock updates will propagate
between tiers. We could not observe measurable overhead in la-
tency ping tests, or throughput netperf tests.

Our current space overhead is 20 bytes per packet, with 16 bytes
dedicated to the logical clock in the IP header option. In the case
of vector clocks for multi-writer systems, this limits the size of the
vector to four 32 bit entries. This is not a hard limit, although ac-
commodating hundreds of entries would result in little useful pay-
load per packet, and a noticeable bandwidth overhead.

4.3 Buffering Network Packets

Outbound nodes maintain two local logical clocks. The clock
of pending writes is updated by either (or both of) the issuing disk
writes or propagation of causality through internal network packets.
The second clock of committed writes is updated by acknowledg-
ments from the DR backup site. Comparing the two clocks allows
us to determine if a network packet produced by the VM can be
released or if it must be temporarily buffered.

We achieve this by appending a queueing discipline to the net-
work backend driver (NetQueue), which tags outbound packets with
the current pending write clock. Because logical clocks increase
monotonically, packets can be added at the back of the queue and
taken from the front without the need for sorting. Packets are de-
queued as updates to the committed logical clock are received.

We make no assumptions on the behavior of disk IO at the sec-
ondary site, and thus need to consider that write completion may be
acknowledged out of order — this is particularly relevant given our



previous discussion on sync () -like behavior. Out-of-sequence
acknowledgements are thus not acted upon until all intermediate
acks arrive.

For vector clocks with two or more entries, we use a set of cas-
cading queues, one for each entry in the vector. As different entries
in the committed vector clock are updated, the affected packets at
the front of the corresponding queue are dequeued and inserted
in the next queue in which they have to block. Insertion uses bi-
nary search to maintain queue ordering. Once popped from the last
queue, packets leave the system.

4.4 Storage in the Cloud Backup Site

At the secondary site, a Backup Server collects all incoming disk
writes, commits them to a storage volume which can be used as the
disk of arecovery VM if there is a disaster, and acknowledges write
commits to the primary site. The Backup Server is a user level
process, and thus does not require any special privileges on the
backup site; our evaluation demonstrates how we have deployed
PipeCloud using the Amazon Elastic Compute Cloud and Elastic
Block Store services.

When there is only a single disk to be protected, the Backup
Server performs writes directly to the backup storage volume. These
writes should be performed in a durable manner which flushes them
past the OS level cache. For the multi-writer case, a single Backup
Server receives write streams from multiple protected VMs. Unlike
the single disk case, this means that writes from multiple disks must
be preserved respecting total ordering, if possible. Without special
handling, the WAN link, the kernel and the disk controller at the
Backup Server may all reorder writes. If a failure occurred, this
could result in a write being preserved without causally-precedent
writes having survived. While EMC Consistency Groups [7] can
create synchronized point-in-time replicas of a set of disks, our ap-
proach achieves causally synchronized replicas.

To avoid this problem, we use the vector clocks maintained at
each primary server as a guide for how writes to the backup disks
should be ordered. When a primary sends a disk write to the backup,
it includes its current vector clock. Ordering of the vector clocks
indicates causality precedence and allows the Backup Server to en-
force the same ordering in its writes. Without having application-
level hints, we allow any ordering for writes which are considered
to have concurrent vector clocks.

In the ideal case, the Backup Server maintains dedicated hard-
ware (an SSD or a separate log-structured rotating disk) to ini-
tially record the writes it receives, with metadata about each write
prepending the data. Writes are thus persisted, and acknowledge-
ments returned to the primary, with minimal latency. A separate
consumer process then opportunistically transfers the writes to the
actual VM disk volumes. The vector clock-based ordering of writes
among tiers is performed at this later stage, outside of the critical
acknowledgement path. While we have not implemented this, we
can preserve a causal history of each disk by retaining all writes
with their logical clocks. All storage volumes are backed by RAID
or hardware with similarly strong durability guarantees.

Unfortunately, the reality of cloud storage is removed from these
requirements. Services such as Amazon’s EBS, do not offer many
necessary guarantees. There is no user control to ensure disk writes
are uncached, committed in-order, and have actually moved from
memory to the disk. In the event of infrastructure outages, there
are loose availability guarantees [20]—simultaneous use of multi-
ple providers has been proposed to mitigate this [3, 5]. Virtualiza-
tion hides the details of hardware features which are relevant to the
performance of a backup server, such as availability of SSDs, or
physical layout for log-structured partitions.

Recent events indicate a shift in cloud providers toward provid-
ing SLAs in their storage services [20]. This could be offered
as a differential service, and would represent the ideal substrate
for cloud-based DR. We believe DR makes for an extremely com-
pelling case to move forward on storage durability and availability
guarantees. SLAs already in place by many providers [2], point
toward widely realizing these basic primitives in the short term.

S. BLACK-BOX CAUSALITY AND RPO

Guaranteeing that clients will experience the same recovery se-
mantics upon disaster as with synchronous replication is closely
tied to our ability to introspect causality relations on a black-box
VM. We start analyzing the guarantees we provide, and our limita-
tions, with this basic building block.

As argued earlier, in a single-VM system, we can use the local
machine clock as a “global” clock to timestamp writes and network
packets and derive a total ordering of events; in this case, holding a
packet until all writes with timestamps lower or equal to the packet
is sufficient to ensure all causally dependent writes have finished.
Next consider the multi-VM single-writer scenario.

LEMMA 1. In a multi-VM single writer system, it is sufficient
to hold a network packet until the commit count at the secondary
becomes greater than or equal to the local counter value at the
outbound node.

Proof Sketch: At the writer node, tagging internal messages with
the local write counter captures all writes that were issued prior to
sending out this internal message (and thus, all causally dependent
writes as well). As shown in Figure 5, each node computes the max
of its local counter and the one on the arriving message; since the
counter at other nodes lag the writer node, doing so propagates the
counter value from the writer node. At the outbound node, holding
the network packet until writes committed by the secondary exceed
this counter ensures that all causally dependent writes issued by the
writer node have been completed at the secondary. [

Our PipeCloud implementation uses three additional mechanisms
to ensure that this property holds in practice even in multi-core
environments: (i) the Xen backend driver executes in a serialized
manner for a given virtual device (ii) we limit VMs to a single net-
work interface and a single protected block device (iii) the clock is
updated with atomic barrier instructions.

Finally consider the general multi-VM multi-writer case. Here
we resort to using count vectors that track a “write frontier” of
causally dependent writes at each writer. Like in the single writer
case, the dependencies are propagated by piggybacking count vec-
tors on internal messages. Upon message receipt, a node computes
the max. of the local and piggybacked count vector thereby cap-
turing the union of all causally dependent writes that need to be
tracked. Thus, the following applies:

LEMMA 2. Inamulti-writer system, it is sufficient for PipeCloud
to release a network packet once all writes with a count vector less
than or equal that of the network packet have finished.

Proof Sketch: The count vector, m, that an outgoing message is
tagged with, represents the events at each writer node that happened-
before the packet was created. If m[i] = k, then all writes up to k at
writer node ¢ must have causally preceded packet m. Likewise, any
write with value greater than k at node 7 is considered to have hap-
pened concurrently (or after) packet m. Hence, holding the packet
until all writes in m have finished on all machines ensures that all
causally related writes complete before network output becomes
visible. [
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Figure 8: Pipelined Synchrony determines dependency infor-
mation from communication between tiers. The replies R2
and W1 must be buffered because they are preceded by the
database write, but reply R1 can be sent immediately.

Armed with these conclusions, we revisit client RPO guarantees
from § 2.2. First, the Secondary view (SV) remains a subset of the
Primary (PV): writes are propagated to the secondary after issuance
in the primary. Second, and most importantly, the Client View (CV)
remains a subset of the SV: the CV is only updated when client-
bound packets are released. Thus, PipeCloud is no worse than sync
replication, and therefore yields a client RPO of zero. Per lemma
2, clients will not receive updates that are not contained in the sec-
ondary site, and therefore no inconsistencies will arise after dis-
aster recovery. Clients thus perceive synchronous replication and
PipeCloud as indistinguishable.

One limitation of our black-box causality tracking is that our ap-
proach conservatively marks all writes issued before an outgoing
message as dependent; while this set of writes contains all causally
dependent writes, it may include other independent writes as well.
Since our black-box system has no application visibility, we are
unable to discern between dependent and independent writes, re-
quiring us to conservatively mark all prior writes as dependent for
safety. To illustrate, consider two separate application threads pro-
cessing requests on different data items. PipeCloud cannot differ-
entiate between these threads and, as a result, may conservatively
mark the network packets from one thread as being dependent on
the writes from the other thread which happened to precede them,
regardless of actual application level dependence. This is illus-
trated in Figure 8: while both reads are independent from “Write
17, “Read 2” is affected by communication between the middle and
DB tier after “Write 1” is propagated to the secondary. As a result,
the reply to “Read 2” is unnecessarily delayed.

6. EVALUATION

We have evaluated the performance of PipeCloud under normal
operating conditions, as well as its failure properties, using both
a local testbed and resources from Amazon EC2. On our local
testbed, we use a set of Dell servers with quad core Intel Xeon
2.12GHz CPUs and 4GiB of RAM. The servers are connected by a
LAN, but we use the Linux zc tool to emulate network latency be-
tween the hosts; we have found that this provides a reliable WAN
network emulation of 50 or 100 ms delays. Our EC2 experiments
use “Large” virtual machine instances (having two 64-bit cores
and 7.5GiB of memory) in the US East region. Virtual machines
in both the local testbed and EC2 use CentOS 5.1, Tomcat 5.5,
MySQL 5.0.45, and Apache 2.23. We compare three replication
tools: DRBD 8.3.8 in synchronous mode, our pipelined synchrony
implementation, and an asynchronous replication tool based on our
pipelined synchrony but without any network buffering.

Our evaluation focus is on client-server applications and we con-
sider three test applications. 1) We use the MySQL database either

x®
(=3
S

-~ Sync

5600 PipeCloud —e— -~

2 ~

£400

Q

g

2200 //

2 = £ 2 E
0 Cl

0 10 20 30 40 50 £

Number of Clients

(a) MySQL Response Time (b) Throughput

Figure 9: Clients must wait for multiple WAN delays with Sync,
but PipeCloud has a consistent response time just barely over
the RTT of 50 ms. By reducing the time DB tables must be
locked for each transaction, PipeCloud is able to provide a
much higher throughput relative to Sync.

by itself or as part of a larger web application. We use the Inn-
oDB storage engine to ensure that database writes are committed
to disk before replying to clients, and we store all of the InnoDB
data and log files on a protected disk partition. In single VM exper-
iments, we communicate directly with the MySQL database via a
Java application running on an external client machine. 2) TPC-W
is an e-commerce web benchmark that emulates an online book-
store. TPC-W is composed of two tiers, a Tomcat application server
and a MySQL database, that each run in separate virtual machines;
we only protect the disk used for the database files. TPC-W in-
cludes a client workload generator which we run on a server which
is considered external to the protected system. 3) We have also
written a PHP based web application called CompDB which al-
lows us to more precisely control the amount of computation and
database queries performed when processing requests. The appli-
cation can be deployed across one, two, or three tiers, each of which
runs an Apache server and a MySQL database. Requests are gen-
erated by the httperf tool and access a PHP script on the front-end
server which performs a configurable amount of computation and
insert queries to the local database before being propagated to the
next tier which repeats the process. Together, these applications al-
low us to emulate realistic application workloads and perform con-
trolled analyses of different workload factors.

6.1 Single Writer Database Performance

We first measure the performance of PipeCloud when protecting
the disk of a MySQL database. We imposed a 50ms RTT from pri-
mary to backup in our local testbed; this limits the minimum pos-
sible response time to S0ms for the non-asynchronous approaches.

Figure 9(a) shows how the response time changes as the client
load on the database increases. Each client connects to the database
server and repeatedly inserts small 8 byte records into a table. Since
the protected application is a database that must ensure consistency,
the table must be locked for each individual transaction so they
can be performed serially. With Sync, the table must be locked
for at least one RTT because a transaction cannot complete until
the remote disk acknowledges the write being finished. This means
that when a client request arrives, it must wait for a round trip delay
for each pending request that arrived before it. This causes the
response time, when using Sync, to increase linearly with a slope
based on the round trip delay to the backup.

In PipeCloud, the database table only needs to be locked until
the local disk write completes, allowing for much faster request
processing. This results in a much lower response time and higher
throughput because many requests can be processed during each
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Figure 10: PipeCloud has higher TPC-W throughput than
synchronous, and performs almost equivalently to an asyn-
chronous approach when there is a 50 ms round trip delay.

round trip delay to the backup. Figure 9(b) shows that PipeCloud
achieves a maximum throughput over twelve times higher than Sync.
While using an asynchronous approach may allow for an even higher
throughput, PipeCloud provides what asynchronous approaches can-
not: zero data loss.

6.2 Multi-Tier TPC-W Performance

We use PipeCloud to protect a set of virtual machines running
the TPC-W online store web benchmark to see the performance of
a realistic application with a mixed read/write workload.

We first measure the overall performance of TPC-W as we vary
the latency between the primary and backup site when using dif-
ferent replication mechanisms. Figure 10(a) shows the maximum

throughput achieved by the different replication schemes. PipeCloud’s

maximum throughput is nearly identical to that of an asynchronous
scheme—the ability to pipeline request processing and state repli-
cation effectively masks the overhead of disaster recovery. When
the round trip delay increases to 100 ms, the throughput of syn-
chronous drops even further, but PipeCloud’s performance is effec-
tively unaffected. PipeCloud is able to maintain a throughput two
times better than the synchronous approach.

In Figure 10(b) we see that PipeCloud’s pipelining also reduces
response times compared to a synchronous approach, even for rel-
atively low client loads where the throughput of each approach
is similar. The load-response time curve for PipeCloud closely
follows the asynchronous approach, offering a substantial perfor-
mance benefit compared to synchronous and the same level of con-
sistency guarantees.

We next categorize the request types of the TPC-W application
into those which involve writes to the database and those which are
read-only. The workload contains a mix of 60% reads and 40%
writes, and we measure the response times for each category. Fig-
ure 11(a) shows a CDF of the response times for read-only requests
when there are 50 active clients and there is a 100 ms roundtrip
time to the backup. PipeCloud has a slightly higher base response
time because some read-only requests are processed concurrently
with requests which involve writes. Since PipeCloud cannot distin-
guish between the packets related to read-only or write requests, it
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Figure 11: With 100 ms RTT, the black-box network buffering
in PipeCloud causes some read-only requests to have higher
response times, but it provides a significant performance im-
provement for write requests compared to synchronous.

must conservatively buffer both types. However, even with some
requests being unnecessarily delayed, PipeCloud’s overall perfor-
mance for reads is very close to synchronous DRBD.

PipeCloud’s greatest strength shows when we observe the re-
sponse time of requests that involve at least one database write in
Figure 11(b). PipeCloud’s ability to overlap work with network de-
lays decreases the median response time by 50%, from over 600
ms to less than 300 ms. Only 3% of requests to PipeCloud take
longer than one second; with synchronous replication that rises
nearly 40% . This improved performance allows PipeCloud to be
used with much more stringent performance SLAs.

6.3 Impact of Read and Write Rates

This experiment explores how the network buftering in PipeCloud
can unnecessarily delay read-only requests that are processed con-
currently with writes. We use our CompDB web application in a
single-VM setup and send a constant stream of 100 read requests
per second as well as a variable stream of write requests that insert
records into a protected database. The read requests return static
data while the writes cause a record to be inserted to the database.
There is a 50 ms RTT between primary and backup. Figure 12(a)
shows how the performance of read requests is impacted by the
writes. When there is a very low write request rate, the response
time of Sync and PipeCloud are very similar, but as the write rate
rises, PipeCloud sees more read-only packets being delayed. How-
ever, the increased write rate also has a performance impact on the
read requests in Sync because the system quickly becomes over-
loaded. PipeCloud is able to support a much higher write workload
and still provide responses to read requests within a reasonable time
as reflected by a lower average response time for PipeCloud under
load. However, PipeCloud’s network buffering impacts those read
requests which happen to coincide with write requests, resulting in
a higher standard deviation in the response time as shown in Fig-
ure 12(b). We believe that the trade-off provided by PipeCloud
is a desirable one for application designers: a small reduction in
read performance at low request rates is balanced by a significant
reduction in write response times and support for higher overall
throughput.
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Figure 12: PipeCloud’s black box network buffering causes
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than Sync, but pipelining supports a much larger write work-
load than Sync.
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Figure 13: PipeCloud continues processing as writes are sent to
the backup site, allowing it to provide equivalent performance
to asynchronous replication if there is sufficient work to do.

6.4 Multi-tier Sensitivity Analysis

To verify PipeCloud’s ability to hide replication latency by over-
lapping it with useful work, we performed an experiment in which
we arbitrarily adjust the amount of computation in a multi-tier server.
We use the CompDB application split into two tiers; the front tier
performs a controlled amount of computation and the backend in-
serts a record into a database. We also compare PipeCloud against
a naive version that only applies pipelining to the DB tier. Only an
unsafe asynchronous approach is able to provide a response time
faster than the round trip delay of 50ms.

Figure 13 shows how the average response time changes as a
function of the controlled amount of computation. Naive PipeCloud
has only a slight performance gain over synchronous because it can
overlap only the DB’s work with its own writes. The computation
performed by the front tier cannot be pipelined since the boundary
separating internal and external events has naively divided the two
tiers, enforcing a stricter than necessary serial ordering.

However, when PipeCloud is applied jointly across the two tiers,
it is able to perform processing from multiple tiers concurrently
with replication, essentially providing up to 50 ms of “free compu-
tation”. For requests that require more processing than the round
trip time, PipeCloud provides the same response time as an asyn-
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Figure 14: Each tier protected with synchronous replication in-
creases response time by at least one RTT. Pipelining the repli-
cation of writes provides a much lower response time.
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Figure 15: Primary, secondary, and client view of an applica-
tion state when a disaster strikes after 500 MySQL updates.
Both sync- and pipelined sync-based approaches guarantee
that the client view is bounded by the state of the secondary.

chronous approach, with the advantage of much stricter client RPO
guarantees.

6.5 Protecting Multiple Databases

With current approaches, often only a single tier of an applica-
tion is protected with DR because it is too expensive in terms of
cost and performance to replicate the state of multiple application
tiers. To evaluate PipeCloud’s support for multiple servers with
protected storage we consider a 3-tier deployment of our Com-
pDB application configured so each tier includes both a web and
database component. Figure 14 shows the average response time
of requests to this application when either one, two, or all three of
the tiers are protected by a DR system. There is a 50 ms RTT, and
we use a single client in order to provide a best case response time.
With synchronous replication, the response time increases by more
than a round trip delay for every tier protected since the writes per-
formed at each tier must be replicated and acknowledged serially.

PipeCloud on the other hand, is able to pipeline the replica-
tion processes across tiers, providing both better overall perfor-
mance and only a minimal performance change when protecting
additional tiers. When protecting all three tiers, PipeCloud reduces
the response time from 426 ms to only 63 ms, a 6.7 times reduc-
tion. Being able to pipeline the replication of multiple application
components allows PipeCloud to offer zero data loss guarantees to
applications which previously would have resorted to asynchronous
replication approaches simply due to the unacceptable performance
cost incurred by serial, synchronous replication.

6.6 Failure evaluation

6.6.1 Comparing replication strategies

PipeCloud seeks to provide performance on-par with asynchronous,
but it also seeks to assure clients of the same consistency guarantee
as a synchronous approach. Figure 15 compares the consistency
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Figure 16: When protecting multiple databases, PipeCloud still
guarantees that clients do not receive replies unless data has
been durably committed to the backup.

guarantees provided by Sync, Async, and Pipelined Synchrony. As
in §6.1, a single MySQL database is backed up to a secondary site
50 msecs away. Out of a set of 500 database inserts that occur im-
mediately prior to a disaster, we examine the number of records
recorded at the primary and secondary sites and the number of
confirmations received by the client. Sync guarantees that the sec-
ondary view (SV) is almost identical to the primary (PV), but al-
lows the client (CV) to lag behind the secondary. With Async, the
client is not limited by the rate of confirmations from the secondary
site, causing the client to receive many unsafe replies (CV > SV).
However, with Pipelined synchrony, these unsafe replies do not oc-
cur because network packets are buffered until the secondary’s acks
are received; as a result, PipeCloud is able to provide clients with
the same guarantee as synchronous—the data for any response they
receive will always have been safely committed to the backup site.

6.6.2 Recovering to EC2

Next we emulate a disaster scenario in which the secondary site
takes over request processing for a CompDB stack, configured with
a frontend node that performs database insertions on a master-master
database split between two backend nodes. We run the primary site
within our local testbed and use Amazon EC2 VMs to run both
the Backup and the failover servers. The network latency mea-
sured from our primary site in western Massachusetts to the backup
server in EC2’s northern Virginia site was 16 ms. We use EBS vol-
umes for the two protected DB disks. Prior to the failure, a single
EC2 VM acting as the Backup Server applies the write streams re-
ceived from both of the protected VMs to the EBS volumes.

Upon failure, the Backup Server disables replication and uses
the EC2 API to detach the EBS volumes. It then reattaches the two
backup volumes to a set of new cloud instances. During bootup,
the database VMs perform a consistency check by launching the
mysqgld process. Once this is complete, the application resumes
processing requests. The table below details the time (in seconds)
required for each of these steps; in total, the time from detection
until the application is active and ready to process requests took
under two minutes.

Detach | Reattach | Boot | Total
Time (s) 27 13 75 115

Figure 16 shows the consistency views for the last fifty requests
sent to each of the DB masters prior to the failure. As in the sin-
gle writer case described previously, PipeCloud’s multi-writer DR
system is able to provide the consistency guarantee that client view
will never exceed what is safely replicated to the secondary.

This experiment illustrates the potential for automating the re-
covery process using cloud platforms such as EC2. The API tools
provided by such clouds automate steps such as provisioning servers
and reattaching storage. While the potential to reduce recovery

time using cloud automation is very desirable, it remains to be
seen if commercial cloud platforms can provide the availability and
durability required for a disaster recovery site.

7. RELATED WORK

Disaster Recovery is a key business functionality and a widely
researched field. We have previously mentioned the work by Kee-
ton and Wilkes on treating asynchronous replication as an optimiza-
tion problem, and balancing the two primary concerns: financial
objectives and RPO deltas [10]. In Seneca [9] the space of asyn-
chronous replication of storage devices is studied, with a focus on
optimizations such as write and acknowledgment buffering and co-
alescing. A similar study is carried out, although at the file system
level, in SnapMirror [19]. Recent studies show a large potential for
high yield of write coalescing in desktop workloads [21]. We have
not directly leveraged the insights of write coalescing in our work
due to our stringent zero-RPO objectives.

Another area of interest for storage durability is achieving sur-
vivability by architecting data distribution schemes: combinations
of striping, replication, and erasure-coding are used to store data
on multiple sites [27]. These concerns become paramount in cloud

storage, in which the durability and availability guarantees of providers

are, to say the least, soft. Two recent systems attack these deficien-
cies by leveraging multiple cloud providers: DepSky [3] provides
privacy through cryptography, erasure coding and secret sharing,
while Skute [5] aims to optimize the cost/response time tradeoff.
‘We highlight that while availability and durability are increased, so
is latency — unfortunately. Replication chaining techniques previ-
ously used in industry [8] may complement these techniques and
ameliorate the latency overhead, possibly at much higher cost. Er-
ror correcting codes within a file system’s replication stream have
also been proposed to improve reliability despite network loss [24].

A long tradition of distributed systems research underpins our
work. We use logical clocks to track causality, originally intro-
duced by Leslie Lamport [13]. Further, we use techniques tra-
ditionally associated with eventual consistency [4, 12] to enforce
pipelined synchronous replication throughout the nodes that make
up a distributed service. We employ a vector clock-style approach [16]
to allow each node to represent its knowledge of the system at the
moment of producing data, and we allow nodes to propagate their
knowledge to peers, as in anti-entropy or gossiping protocols [23].
Previous work in inferring causality in a distributed systems of
black-boxes [1] focused on performance diagnosis as opposed to
consistency enforcement during replication.

The concept of speculative execution has been used to reduce
the impact of latency in a variety of domains [25, 18]. These ap-
proaches typically require application support for rolling back state
if speculation must be cancelled. Pipelined synchrony also uses
speculative execution, but it must cancel speculated work only if
the primary fails; since it is the primary which performs the specu-
lation, the roll back process is implicit in the failover to the sec-
ondary site. This allows PipeCloud to perform speculation and
rollback in a black box manner without requiring any special sup-
port from clients, nor the protected application or OS. The concept
of combining asynchronous replication with causality tracking was
introduced by Strom and Yemini [22] to build a highly available
distributed system that could recover from failure using rollback
and message replay. These ideas are also used in the external syn-
chrony work [18], which shows that in many cases the benefits of
synchronous and asynchronous IO can be simultaneously reaped by
intelligently overlapping 10 with processing. Their treatment is fo-
cused on file system activity in a single host, and requires operating
system support for tracking dependencies between processes.



We draw inspiration from Remus [6], which implements VM
lockstep replication for LAN-based fault tolerance, and we make
use of its network buffering code in our implementation. The me-
chanics of Remus rely heavily on low latency between nodes, al-
lowing for replication of a VM’s memory in addition to its disk.
While this allows for complete protection of the VM’s live state,
our experience suggests memory propagation becomes too costly
in terms of both bandwidth and performance overhead when net-
work latency is high. Some of these issues have been resolved by
RemusDB [17], which optimizes the replication process for virtual
machines running database systems. However, this is no longer
a completely application agnostic approach, which is one of our
goals. We note though that many of these optimizations may still
prove useful for replication in WAN environments. Overall, our
work expands the concepts of external synchrony [18] and Remus-
style black-box protection of virtual machines [6] to support WAN
replication, disaster recovery, and multi-tier causality tracking.

8. CONCLUSION

Cloud computing platforms are desirable to use as backup loca-
tions for Disaster Recovery due to their low cost. However, the high
latency between enterprise and cloud data centers can lead to unac-
ceptable performance when using existing replication techniques.
Our pipelined synchronous replication overcomes the deleterious
effects of speed-of-light delays by overlapping or pipelining com-
putation with replication to a cloud site over long distance WAN
links. Pipelined synchrony offers the much sought after goal: per-
formance of asynchronous replication with the same guarantees to
clients as synchronous replication. It does so by ensuring network
packets destined for external entities are only released once the disk
writes they are dependent on have been committed at both the pri-
mary and the backup. Our evaluation of PipeCloud demonstrates
dramatic performance benefits over synchronous replication both in
throughput and response time for a variety of workloads. MySQL
database throughput goes up by more than an order of magnitude
and the median response time for the TPC-W web application drops
by a half. Recreating failures also shows PipeCloud delivers on the
promise of high performance coupled with the proper consistency
in the client’s view of storage.
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